Skip to main content

Advertisement

Log in

Further insight on A-wave in acute and chronic demyelinating neuropathies

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

A-wave is a late motor response that maintains the same characteristics of latency, amplitude and shape with every electrical stimuli at a proper given intensity. The presence of A-waves was reported both in chronic (CIDP) and acute (AIDP) forms of inflammatory demyelinating polyradiculoneuropathy. It is attributed to the effect of either sprouting phenomena or ephaptic/ectopic discharge. In the first condition it could be a sign of functional recovery, while in the second it could represent an early indicator of demyelination. Aims of our research were to investigate retrospectively the presence of the A-waves, establishing whether its frequency is more common in CIDP or AIDP. Data from 77 patients, 57 male and 20 female, mean age 60.7 years (SD 15.4), were recovered from clinical records and their neurophysiological tests retrieved for reanalysis. Our results seem to indicate that A-waves can represent an early sign of acute pathology of peripheral nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bischoff C, Stalberg E, Falck B, Puksa L (1996) Significance of A-waves recorded in routine motor nerve conduction studies. Electroencephalogr Clin Neurophysiol 101:528–533

    Article  CAS  PubMed  Google Scholar 

  2. Bischoff C (2002) Neurography: late responses. Muscle Nerve Suppl 11:S59–S65

    Google Scholar 

  3. Rowin J, Meriggioli MN (2000) Electrodiagnostic significance of supramaximally stimulated A-waves. Muscle Nerve 23:1117–1120

    Article  CAS  PubMed  Google Scholar 

  4. Causey G, Hoffman H (1955) Axon sprouting partially deneurotized nerves. Brain 78:661–668

    Article  CAS  PubMed  Google Scholar 

  5. Magistris MR, Roth G (1992) Motor axon reflex and indirect double discharge: ephaptic transmission? A reappraisal. Electroencephalogr Clin Neurophysiol 85:124–130

    Article  CAS  PubMed  Google Scholar 

  6. Sadjadpour K (1975) Postfacial palsy phenomena: faulty nerve regeneration or ephaptic transmission? Brain Res 95:403–406

    Article  CAS  PubMed  Google Scholar 

  7. Seltzer Z, Devor M (1979) Ephaptic transmission in chronically damaged peripheral nerves. Neurology 29:1061–1064

    CAS  PubMed  Google Scholar 

  8. Colachis SC, Pease WS, Johnson EW (1992) Polyphasic motor unit action potentials in early radiculopathy: their presence and ephaptic transmission as an hypothesis. Electromyogr Clin Neurophysiol 32:27–33

    CAS  PubMed  Google Scholar 

  9. Havton LA, Hotson JR, Kellerth JO (2001) Partial peripheral motor nerve lesions induce changes in the conduction properties of remaining intact motoneurons. Muscle Nerve 24:662–666

    Article  CAS  PubMed  Google Scholar 

  10. Howe JF, Calvin WH, Loeser JD (1976) Impulses reflected from dorsal root ganglia and from focal nerve injuries. Brain Res 116:139–144

    Article  CAS  PubMed  Google Scholar 

  11. Rajabally YA, Jacob S (2006) Proximal nerve conduction studies in chronic inflammatory demyelinating polyneuropathy. Clin Neurophysiol 117:2079–2084

    Article  PubMed  Google Scholar 

  12. Vucic S, Black K, Chong PS, Cros D (2007) Multifocal motor neuropathy with conduction block: distribution of demyelination and axonal degeneration. Clin Neurophysiol 118:124–130

    Article  PubMed  Google Scholar 

  13. Alexandrov AS, Christova LG, Ishpekova BA (2001) A-waves in patients with novel hereditary motor and sensory neuropathy Lom. Acta Physiol Pharmacol Bulg 26:55–58

    CAS  PubMed  Google Scholar 

  14. Puksa L, Stalberg E, Falck B (2003) Occurrence of A-waves in F-wave studies of healthy nerves. Muscle Nerve 28:626–629

    Article  PubMed  Google Scholar 

  15. Roth G, Magistris MR (1999) Indirect discharges as an early nerve conduction abnormality in the Guillain–Barre syndrome. Eur Neurol 42:83–89

    Article  CAS  PubMed  Google Scholar 

  16. Fullerton PM, Gilliatt RW (1965) Axon reflexes in human motor nerve fibres. J Neurol Neurosurg Psychiatry 28:1–11

    Article  CAS  PubMed  Google Scholar 

  17. Albers JW, Kelly JJ Jr (1989) Acquired inflammatory demyelinating polyneuropathies: clinical and electrodiagnostic features. Muscle Nerve 12:435–451

    Article  CAS  PubMed  Google Scholar 

  18. Kornhuber ME, Bischoff C, Mentrup H, Conrad B (1999) Multiple A waves in Guillain–Barre syndrome. Muscle Nerve 22:394–399

    Article  CAS  PubMed  Google Scholar 

  19. Gordon PH, Wilbourn AJ (2001) Early electrodiagnostic findings in Guillain–Barre syndrome. Arch Neurol 58:913–917

    Article  CAS  PubMed  Google Scholar 

  20. Magda P, Latov N, Brannagan TH et al (2003) Comparison of electrodiagnostic abnormalities and criteria in a cohort of patients with chronic inflammatory demyelinating polyneuropathy. Arch Neurol 60:1755–1759

    Article  PubMed  Google Scholar 

  21. Van den Bergh PY, Pieret F (2004) Electrodiagnostic criteria for acute and chronic inflammatory demyelinating polyradiculoneuropathy. Muscle Nerve 29:565–574

    Article  PubMed  Google Scholar 

  22. Rajabally YA, Jacob S, Hbahbih M (2005) Optimizing the use of electrophysiology in the diagnosis of chronic inflammatory demyelinating polyneuropathy: a study of 20 cases. J Peripher Nerv Syst 10:282–292

    Article  PubMed  Google Scholar 

  23. Saperstein DS, Katz JS, Amato AA, Barohn RJ (2001) Clinical spectrum of chronic acquired demyelinating polyneuropathies. Muscle Nerve 24:311–324

    Article  CAS  PubMed  Google Scholar 

  24. Sander HW, Latov N (2003) Research criteria for defining patients with CIDP. Neurology 60:S8–S15

    PubMed  Google Scholar 

  25. Tankisi H, Pugdahl K, Fuglsang-Frederiksen A et al (2005) Pathophysiology inferred from electrodiagnostic nerve tests and classification of polyneuropathies. Suggested guidelines. Clin Neurophysiol 116:1571–1580

    Article  PubMed  Google Scholar 

  26. Hadden RD, Cornblath DR, Hughes RA et al (1998) Electrophysiological classification of Guillain–Barre syndrome: clinical associations and outcome. Plasma Exchange/Sandoglobulin Guillain–Barre Syndrome Trial Group. Ann Neurol 44:780–788

    Article  CAS  PubMed  Google Scholar 

  27. Daube JR, Rubin DI (2009) Clinical neurophysiology, 3rd edn. Oxford University Press, New York

    Google Scholar 

  28. Uncini A, Di Muzio A, Sabatelli M et al (1993) Sensitivity and specificity of diagnostic criteria for conduction block in chronic inflammatory demyelinating polyneuropathy. Electroencephalogr Clin Neurophysiol 89:161–169

    Article  CAS  PubMed  Google Scholar 

  29. Roth G (1993) Myo-axonal ephaptic responses and their F waves in case of chronic denervation. Electroencephalogr Clin Neurophysiol 89:252–260

    Article  CAS  PubMed  Google Scholar 

  30. Asbury AK, Cornblath DR (1990) Assessment of current diagnostic criteria for Guillain–Barre syndrome. Ann Neurol 27(Suppl):S21–S24

    Article  PubMed  Google Scholar 

  31. Deepak G, Muraleedharan N, Baheti NN, Sarma SP, Abraham K (2008) Electrodiagnostic and clinical aspects of Guillain–Barre syndrome: an analysis of 142 cases. J Clin Neuromuscul Dis 10:42–51

    Article  PubMed  Google Scholar 

  32. Haq RU, Fries TJ, Pendlebury WW et al (2000) Chronic inflammatory demyelinating polyradiculoneuropathy: a study of proposed electrodiagnostic and histologic criteria. Arch Neurol 57:1745–1750

    Article  CAS  PubMed  Google Scholar 

  33. Thaisetthawatkul P, Logigian EL, Herrmann DN (2002) Dispersion of the distal compound muscle action potential as a diagnostic criterion for chronic inflammatory demyelinating polyneuropathy. Neurology 59:1526–1532

    PubMed  Google Scholar 

  34. Lewis RA (2007) Chronic inflammatory demyelinating polyneuropathy. Neurol Clin 25:71–87

    Article  PubMed  Google Scholar 

  35. Cleland JC, Malik K, Thaisetthawatkul P, Herrmann DN, Logigian EL (2006) Acute inflammatory demyelinating polyneuropathy: contribution of a dispersed distal compound muscle action potential to electrodiagnosis. Muscle Nerve 33:771–777

    Article  PubMed  Google Scholar 

  36. Attal N, Bouhassira D (1999) Mechanisms of pain in peripheral neuropathy. Acta Neurol Scand Suppl 173:12–24 (discussion 48–52)

    Article  CAS  PubMed  Google Scholar 

  37. Caselli A, Spallone V, Marfia GA et al (2006) Validation of the nerve axon reflex for the assessment of small nerve fibre dysfunction. J Neurol Neurosurg Psychiatry 77:927–932

    Article  CAS  PubMed  Google Scholar 

  38. Gozke E, Celebi D, Dortcan N et al (2003) A-waves and electrophysiologically established diagnoses. Electromyogr Clin Neurophysiol 43:33–35

    CAS  PubMed  Google Scholar 

  39. Ito J (2001) Analysis of unusual late responses of peripheral nerves. Rinsho Byori 49:71–76

    CAS  PubMed  Google Scholar 

  40. Magistris MR, Roth G (1992) Motor axon reflex and indirect double discharge: ephaptic transmission? A reappraisal. Electroencephalogr Clin Neurophysiol 85:124–130

    Article  CAS  PubMed  Google Scholar 

  41. Tomasulo RA (1982) Aberrant conduction in human peripheral nerve: ephaptic transmission? Neurology 32:712–719

    CAS  PubMed  Google Scholar 

  42. Baba M, Ozaki I (1995) Electrodiagnostic features in inflammatory demyelinating polyneuropathy. Rinsho Shinkeigaku 35:1365–1367

    CAS  PubMed  Google Scholar 

  43. Hiraga A, Kuwabara S, Ogawara K et al (2005) Patterns and serial changes in electrodiagnostic abnormalities of axonal Guillain–Barre syndrome. Neurology 64:856–860

    CAS  PubMed  Google Scholar 

  44. Rasminsky M (1980) Ephaptic transmission between single nerve fibres in the spinal nerve roots of dystrophic mice. J Physiol 305:151–169

    CAS  PubMed  Google Scholar 

  45. Weber F (1997) Conduction block and abnormal temporal dispersion—diagnostic criteria. Electromyogr Clin Neurophysiol 37:305–309

    CAS  PubMed  Google Scholar 

  46. Viala K, Renie L, Maisonobe T et al (2004) Follow-up study and response to treatment in 23 patients with Lewis–Sumner syndrome. Brain 127:2010–2017

    Article  CAS  PubMed  Google Scholar 

  47. Oh SJ, Claussen GC, Kim DS (1997) Motor and sensory demyelinating mononeuropathy multiplex (multifocal motor and sensory demyelinating neuropathy): a separate entity or a variant of chronic inflammatory demyelinating polyneuropathy? J Peripher Nerv Syst 2:362–369

    CAS  PubMed  Google Scholar 

  48. Gorson KC, Ropper AH, Weinberg DH (1999) Upper limb predominant, multifocal chronic inflammatory demyelinating polyneuropathy. Muscle Nerve 22:758–765

    Article  CAS  PubMed  Google Scholar 

  49. Barriere G, Leblond H, Provencher J, Rossignol S (2008) Prominent role of the spinal central pattern generator in the recovery of locomotion after partial spinal cord injuries. J Neurosci 28:3976–3987

    Article  CAS  PubMed  Google Scholar 

  50. Al-Shekhlee A, Hachwi RN, Preston DC, Katirji B (2005) New criteria for early electrodiagnosis of acute inflammatory demyelinating polyneuropathy. Muscle Nerve 32:66–72

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank all the neurologists of Neuroscience Department, Unit of Neurology, at Pisa University Medical School, who referred their patients and permitted us to examine them electromyographically. We gratefully acknowledge the participation of all subjects, as well as Mr. A. Bruni and Ms. P. Angiolini for their excellent technical assistance. The paper was supported in part by the Italian operating and development MIUR PRIN grant year 2006, n. 2006062332_002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinando Sartucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sartucci, F., Bocci, T., Borghetti, D. et al. Further insight on A-wave in acute and chronic demyelinating neuropathies. Neurol Sci 31, 609–616 (2010). https://doi.org/10.1007/s10072-010-0354-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-010-0354-x

Keywords

Navigation