Skip to main content
Log in

Effect of Gluconacetobacter spp. on kefir grains and kefir quality

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial, chemical, physical, and sensorial analyses of kefir samples produced using kefir grains embedded with Gluconacetobacter spp. were investigated using kefir samples with Gluconacetobacter spp. inclusion (KA), and regular kefir grains (control, KC) lacking Gluconacetobacter spp. The genus Gluconacetobacter, (identified using PCR) isolated from apple cider vinegar, was embedded in kefir grains. Inclusion of Gluconacetobacter spp. provided a significant biomass increase (p<0.01). The Lactobacillus spp., Lactococcus spp., yeast, Lactobacillus acidophilus, and Bifidobacterium spp. contents of KA were similar to KC. The acetic acid bacterial content of KA was 3.86 log CFU/mL. A significant (p<0.05) increase was observed in the exopolysaccharide content and viscosity of KA compared with KC. Inclusion of a different useful bacterium not naturally present in kefir grains is herein reported. Kefir grains can be an important carrier for microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ottogalli G, Galli A, Resmini P, Volonterio G. Composizione microbiologia, chimica ed ultrastruttura dei ganuli di kefir. Annali. Di. Microbiolgia 23: 109–121 (1973)

    Google Scholar 

  2. Garrote GL, Abraham AG, De Antoni GL. Chemical and microbiological characterization of kefir grains. J. Dairy Res. 68: 639–652 (2001)

    Article  CAS  Google Scholar 

  3. Farnworth ER. Kefir-a complex probiotic. Food Sci. Technol. Bull. Funct. Foods 2: 1–17 (2006)

    Article  Google Scholar 

  4. Güzel-Seydim ZB, Kök-Tas T, Greene AK, Seydim, AC. Review: Functional properties of kefir. Food Sci. Nutr. 51: 261–268 (2011)

    Google Scholar 

  5. Budak NH, Aykin E, Seydim, AC, Greene AK, Guzel-Seydim ZB. Functional properties of vinegar. J. Food Sci. 79: 57–64 (2014)

    Article  Google Scholar 

  6. De Ory I, Romeo LE, Cantero D. Optimum starting-up protocol of a pilot plant scale acetifier for vinegar production. J. Food Eng. 52: 31–37 (2002)

    Article  Google Scholar 

  7. Swings I. The Genera Acetobacter and Gluconobacter. In: The Prokaryotes. Balows A, Triiper HG, Dworkin M, Harder W, Schleifer KH (eds). Springer, New York, NY, USA. pp. 2268–2286 (1992)

    Google Scholar 

  8. Franke HI, Fegan M, Hayward C, Graham Leonard G, Stackebrandt E, Sly LI. Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug. Int. J. Syst. Bacteriol. 4: 1681–1693 (1999)

    Article  Google Scholar 

  9. Nishikawa Y, Takata Y, Nagai Y, Mori T, Kawada T, Ishihara N. Antihypertensive effects of korusu extract, a traditional vinegar produced from unpolished rice, in the SHR rats. Nippon. Kagaku. Kaishi. 48: 73–75 (2001)

    Article  Google Scholar 

  10. Costa AO, Thomaz-Soccol V, Paulino RC, Castro AE. Effect of vinegar on the viability of Giardia duodenalis cysts. Int. J. Food Microbiol. 128: 510–512 (2009)

    Article  CAS  Google Scholar 

  11. Fukami H, Kobayashi S, Tachimoto H, Kishi M, Kaga T, Waki H, Iwamoto M, Tanaka Y. Effect continuous ingestion of acetic acid bacteria on memory retention and the synaptic function in aged rat. Biosci. Biotech. Bioch. 74: 1498–1500 (2010)

    Article  CAS  Google Scholar 

  12. Oda T, Tachimoto H, Kishi M, Kaga T, Ichihash M. Effect of oral intake of ceramide-containing acetic acid bacteria on skin barrier function. Anti-Aging Med. 7: 50–54 (2010)

    Article  Google Scholar 

  13. Irigoyen A, Arana I, Castiella M, Torre P, Ibanez FC. Microbiological, physicochemical, and sensory characteristics of kefir during storage. Food Chem. 90: 613–620 (2005)

    Article  CAS  Google Scholar 

  14. Da Cruz Pedrozo Miguel MG, Gomes Cardoso P, de Assis Lago L, Schwan RF. Diversity of bacteria present in milk kefir grains using culture-dependent and culture-independent methods. Food Res. Int. 43: 1523–1528 (2010)

    Article  Google Scholar 

  15. Budak HN, Guzel Seydim ZB. Antioxidant activity and phenolic content of wine vinegars produced by two different techniques. J. Sci. Food Agr. 90: 2021–2026 (2010)

    CAS  Google Scholar 

  16. Fernández Pérez R, Torres C, Sanz S, Ruiz Larrea F. Rapid molecular methods for enumeration and taxonomical identification of acetic acid bacteria responsible for submerged vinegar production. Eur. Food Res. Technol. 231: 813–819 (2010)

    Article  Google Scholar 

  17. Trcek J, Toyama H, Czuba J, Misiewicz A, Matsushita K. Correlation between acetic acid resistance and characteristics of PQQ-dependent ADH in acetic acid bacteria. Appl. Microbiol. Biotech. 70: 366–373 (2006)

    Article  CAS  Google Scholar 

  18. Kök-Tas T, Ekinci Y, Güzel-Seydim ZB. Identification of microbial flora in kefir grains produced in Turkey using PCR. Int. J. Dairy Technol. 65: 126–131 (2012)

    Article  Google Scholar 

  19. Guzel-Seydim Z, Kök-Taş T, Ertekin B, Seydim, AC. Effect of fat replacers on biomass increase in kefir grains. J. Dairy Sci. 94: 1239–42 (2011)

    Article  CAS  Google Scholar 

  20. Mossel DAA, Corry JEL, Stuijk CB, Baird RM. Essential of the Microbiology of Food: A Texbook for Advance Studies. John Wiley & Sons, Chichester, UK. pp. 224–227 (1995)

    Google Scholar 

  21. Özer, BH, Uzun YS, Kirmaci HA. Effect of cell immobilization on viability of Lactobacillus acidophilus LA-5 and Bifidobacterium bifidum BB-12 in Kasar cheese. Int. J. Dairy Technol. 61: 237–244 (2008)

    Article  Google Scholar 

  22. Marquina D, Santos A, Corpas I, Munoz J, Zazo J, Peinado JM. Dietary influence of Kefir on microbial activities in the mouse bowel. Appl. Microbiol. 35: 136–140 (2002)

    Article  CAS  Google Scholar 

  23. AOAC. Official Method of Analysis of AOAC Intl. 16th ed. Official Methods of Analysis (OMA). Association of Official Analytical Communities, Arlington, VA, USA (1996)

    Google Scholar 

  24. Zisu B, Shah NP. Effects of pH, temperature, supplementation with whey protein concentrate, and adjunct cultures on the production of exopolysaccharides by Streptococcus thermophilus 1275. J. Dairy Sci. 86: 3405–3415 (2003)

    Article  CAS  Google Scholar 

  25. Cerning J, Bouillanne C, Landon M, Desmazeaud M. Isolation and characterization of exopolysaccharides from slime forming mesophilic lactic acid bacteria. J. Dairy Sci. 75: 692–699 (1973)

    Article  Google Scholar 

  26. Ertekin B, Guzel Seydim ZB. Effect of fat replacers on Kefir quality. J. Sci. Food Agr. 90: 543–548 (2010)

    CAS  Google Scholar 

  27. Coggins PC, Schilling MW, Kumari S, Gerrard PD. Development of a sensory lexicon for conventional milk yogurt in the United States. J. Sens. Stud. 5: 671–687 (2008)

    Article  Google Scholar 

  28. The Basic Local Alignment Search Tool. BLAST finds regions of similarity between biological sequences. Available from: http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi. Accessed Jun. 18, 2011.

    Google Scholar 

  29. Yang Z, Zhou F, Ji B, Li B, Luo Y, Yang, L, Li T. Symbiosis between Microorganisms from Kombucha and Kefir: Potential Significance to the Enhancement of Kombucha Function. Appl. Biochem. Biotech. 160: 446–455 (2010)

    Article  CAS  Google Scholar 

  30. Valepyn E, Berezina N, Paquot M. Optimization of production and preliminary characterization of new exopolysaccharides from Gluconacetobacter hansenii LMG1524. Adv. Microbio. 2: 488–496 (2012)

    Article  Google Scholar 

  31. Kök Taş T, Seydim AC, Özer B, Guzel-Seydim ZB. Effect of different fermantation parameters on quality characteristics of kefir. J. Dairy Sci. 92: 780–789 (2013)

    Article  Google Scholar 

  32. Guzel-Seydim, ZB, Seydim AC, Greene AK. Turkish kefir and kefir grains: Microbial enumeration and electron microscopic observation. J. Int. Dairy Technol. 58: 25–29 (2005)

    Article  Google Scholar 

  33. Park JK, Jung JY, Park YH Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol. Lett. 25: 2055–2059 (2003)

    Article  CAS  Google Scholar 

  34. Wang Y, Li C, Liu P, Ahmed Z, Xiao P, Bai X. Physical characterization of exopolysaccharide produced by Lactobacillus plantarum KF5 isolated from Tibet Kefir. Carbohyd. Polym. 82: 895–903 (2006)

    Article  Google Scholar 

  35. Dutta D, Gachhui R. Nitrogen-fixing and cellulose-producing Gluconacetobacter kombuchae sp. nov., isolated from Kombucha tea. Int. J. Syst. Evol. Micr. 57: 353–357 (2007)

    Article  CAS  Google Scholar 

  36. Tratnik L, Rajka B, Herceg Z, Draglic I. The quality of plain and supplemented kefir from goat’s and cow’s milk. Int. J. Dairy Technol. 59 (2006)

    Google Scholar 

  37. Babina NA, Rozhokova IV. Quantitative composition of Kefir grains and Kefir microflora at different of the year. Food Chem. 2: 15–17 (1973)

    Google Scholar 

  38. Libudzisz Z, Piatkiewicz A. Kefir Production in Poland. Dairy Ind. Int. 55: 31–34 (1990)

    Google Scholar 

  39. Witthuhn RC, Schoeman T, Britz TJ. Isolation and characterization of the microbial population of different South African Kefir grains. Int. J. Dairy Technol. 57: 33–37 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilgün Özdemir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özdemir, N., Kök-Taş, T. & Guzel-Seydim, Z. Effect of Gluconacetobacter spp. on kefir grains and kefir quality. Food Sci Biotechnol 24, 99–106 (2015). https://doi.org/10.1007/s10068-015-0015-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0015-1

Keywords

Navigation