Skip to main content
Log in

Influence of the Grain Boundaries on the Heat Transfer in Laser Ceramics

  • Invited Review Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Grain boundaries play a key role in determining several key properties of polycrystalline laser ceramics. Heat transfer measurements at low temperature constitute a good tool to probe grain boundaries. We review the results of heat transfer measurements in polycrystalline Y3Al5O12 garnets as well as Y2O3 and Lu2O3 sesquioxide materials obtained by self-energy-driven sintering of nano-particles. The average phonon mean free path in Y3Al5O12 was found to be significantly larger than the average grain size and to scale with temperature as T −2 at low temperature. Existing models describing the interaction between phonons and grain boundaries are reviewed. Correct temperature dependence of the mean free path and order of magnitude of scattering rates were found by assuming the existence of a grain boundary layer having acoustic properties different from those of the bulk. A different temperature dependence of phonon mean free path was found for the sesquioxides and was ascribed to the stronger elastic anisotropy of these materials. The thermal resistance associated to the grain boundaries of laser ceramics was found to be lower than in other dense polycrystalline ceramic materials reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida: J. Am. Ceram. Soc. 78 (1995) 1033.

    Article  ADS  Google Scholar 

  2. K. Ueda, J.-F. Bisson, H. Yagi, K. Takaichi, A. Shirakawa, T. Yanagitani, and A. Kaminskii: Laser Phys. 15 (2005) 927.

    Google Scholar 

  3. M. Jelinek, J. Lancok, J. Sonsky, J. Oswald, M. Simeckova, L. Jstrabik, V. Studnicka, C. Grivas, and P. Hribek: Czechoslovak J. Phys. 48 (1998) 577.

    Article  ADS  Google Scholar 

  4. A. V. Khodolov and K. M. Golant: Tech. Phys. 50 (2005) 719.

    Article  Google Scholar 

  5. J. H. Park, K. S. Hong, W. J. Cho, and J. H. Chung: Jpn. J. Appl. Phys. 42 (2003) 2839.

    Article  Google Scholar 

  6. J. Lu, H. Yagi, K. Takaichi, T. Uematsu, J.-F. Bisson, Y. Feng, A. Shirakawa, K. I. Ueda, T. Yanagitani, and A. A. Kaminskii: Appl. Phys. B 79 (2004) 25.

    Article  ADS  Google Scholar 

  7. L. Mezeix and D. J. Green: Int. J. Appl. Ceram. Technol. 3 (2006) 166.

    Article  Google Scholar 

  8. A. Kaminskii, M. Akchurin, R. Gainutdinov, K. Takaichi, A. Shirakawa, H. Yagi, T. Yanagitani, and K. Ueda: Crystallogr. Rep. 50 (2005) 869.

    Article  Google Scholar 

  9. J.-F. Bisson, Y. Feng, A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanagitani, and K. I. Ueda: Jpn. J. Appl. Phys. 42 (2003) L1025.

    Article  Google Scholar 

  10. G. J. Quarles: oral presentation at Photonic West 2005.

  11. T. Uematsu, T. Murai, K. Takaichi, K. Misawa, J. Lu, H. Yagi, T. Yanagitani, and K. Ueda: Tech. Rep. IEICE LQE2001-20 (2001)23 [in Japanese].

  12. H. Yagi, T. Yanagitani, T. Numazawa, and K. Ueda: Ceram. Int. (2006) on line.

  13. T. Numazawa, O. Arai, Q. Hu, and T. Noda: Meas. Sci. Technol. 12 (2001) 2089.

    Article  ADS  Google Scholar 

  14. G. A. Slack and D. W. Oliver: Phys. Rev. B 4 (1971) 592.

    Article  ADS  Google Scholar 

  15. C. Kittel: Introduction to Solid State Physics (John Wiley, Hoboken, NJ, 2005) 8th ed.

    Google Scholar 

  16. S. N. Ivanov, A. G. Kozorezov, A. V. Ivanov, A. V. Taranov, et al.: Sov. Phys. Solid State 38 (1996) 792.

    Google Scholar 

  17. Yu, N. Barabanenkov, S. N. Ivanov, A. V. Taranov, E. N. Khazanov, H. Yagi, T. Yanagitani, K. Takaichi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, and A. A. Kamiskii: JETP Lett. 79 (2004) 342.

    Article  Google Scholar 

  18. J. Callaway: Phys. Rev. 113 (1959) 1046.

    Article  ADS  Google Scholar 

  19. P. G. Klemens: Phys. Rev. 119 (1960) 507.

    Article  ADS  Google Scholar 

  20. H. B. G. Casimir: Physica 5 (1938) 495.

    Article  ADS  Google Scholar 

  21. H. Yagi, T. Yanagitani, and K. Ueda: J. Alloys Compd. 421 (2005) 195.

    Article  Google Scholar 

  22. P. L. Kapitza: Zh. Eksp. Teor. Fiz. 11 (1941) 1 [Translation: J. Phys. (USSR) 4 (1941) 181].

    Google Scholar 

  23. W. A. Little: Can. J. Phys. 37 (1959) 334.

    ADS  Google Scholar 

  24. M. Msall, W. Dietsche, K. J. Friedland, and Q.-Y. Tong: Phys. Rev. Lett. 85 (2000) 598.

    Article  ADS  Google Scholar 

  25. M. Msall, W. Dietsche, K. J. Friedland, Q.-Y. Tong, and B. Mohr: Physica B 316 (2002) 366.

    Article  ADS  Google Scholar 

  26. M. A. Weilert, M. E. Msall, A. C. Anderson, and J. P. Wolfe: Phys. Rev. Lett. 71 (1993) 735.

    Article  ADS  Google Scholar 

  27. J. Weber, W. Sandmann, W. Dietsche, and H. Kinder: Phys. Rev. Lett. 40 (1978) 1469.

    Article  ADS  Google Scholar 

  28. H. C. Basso, W. Dietsche, H. Kinder, and P. Leiderer: Kapitza Resistance of Laser Annealed Surfaces, ed. W. Eisenmenger, K. Lassmann, and S. Döttinger (Springer, New York, 1984) p. 212.

    Google Scholar 

  29. E. T. Swartz and R. O. Pohl: Rev. Mod. Phys. 61 (1989) 605.

    Article  ADS  Google Scholar 

  30. D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot: J. Appl. Phys. 93 (2003) 793.

    Article  ADS  Google Scholar 

  31. J. M. Ziman: Electrons and Phonons (Oxford University Press, Oxford, 1960).

    MATH  Google Scholar 

  32. For example, density of fused silica is p = 2.2g/cm3, compared to 2.65 g/cm3 for quartz.

  33. R. R. Monchamp: J. Cryst. Growth 11 (1971) 310.

    Article  Google Scholar 

  34. A. D. McConnell, S. Uma, and K. E. Goodson: J. Micro-electromech. Syst. 10 (2001) 360.

    Google Scholar 

  35. S. F. Akhmetov, G. L. Akhmetova, G. A. Gazizova, V. S. Kovalenko, and T. F. Mirenkova: Russian J. Inorg. Chem. 22 (1977) 1613.

    Google Scholar 

  36. S. N. Ivanov, Y. N. Barabanenkov, A. V. Taranov, E. N. Khazanov, H. Yagi, T. Yanagitani, K. Takaichi, J. Lu, J. F. Bisson, A. Shirakawa, K. Ueda, S. Bagayev, and A. Kaminskii: Phys. Status Solidi B 242 (2005) 1983.

    Article  ADS  Google Scholar 

  37. A. A. Kaminskii, S. N. Bagayev, K. Ueda, K. Takaichi, A. Shirakawa, S. N. Ivanov, E. N. Khazanov, A. V. Taranov, H. Yagi, and T. Yanagitani: Laser Phys. Lett. 3 (2006) 375.

    Article  Google Scholar 

  38. R. C. Picu and V. Gupta: J. Appl. Mech. 63 (1996) 295.

    Google Scholar 

  39. V. Tvergaard and J. W. Hutchison: J. Am. Ceram. Soc. 71 (1988) 157.

    Article  ADS  Google Scholar 

  40. D. A. Young and H. J. Maris: Phys. Rev. B 40 (1989) 3685.

    Article  ADS  Google Scholar 

  41. J. E. Graebner, M. E. Reiss, L. Seibles, T. M. Hartnett, R. P. Miller, and C. J. Robinson: Phys. Rev. B 50 (1994) 3702.

    Article  ADS  Google Scholar 

  42. H. J. McSkimin and P. Andreatch: J. Appl. Phys. 43 (1972) 2944.

    Article  ADS  Google Scholar 

  43. H. J. McSkimin: J. Appl. Phys. 24 (1953) 988.

    Article  Google Scholar 

  44. F. J. Morin and J. P. Maita: Phys. Rev. 96 (1954) 28.

    Article  ADS  Google Scholar 

  45. S. P. Nikanorov and B. K. Kardashev: Elasticity and Dislocation Inelasticity of Crystals (Nauka” Publ. House, Moscow, 1985) [in Russian].

    Google Scholar 

  46. K. Kunc, M. Balkanski, and M. A. Nusimovici: Phys. Status Solidi B 72 (1975) 229.

    Google Scholar 

  47. E. G. Spencer, R. T. Denton, T. B. Bateman, W. B. Snow, and L. G. Van Uitert: J. Appl. Phys. 34 (1963) 2059.

    Article  Google Scholar 

  48. J. W. Palko, W. M. Kriven, S. V. Sinogeikin, J. D. Bass, and Ali Savir: J. Appl. Phys. 89 (2001) 7791.

    Article  ADS  Google Scholar 

  49. D. T. Morelli, C. Uher, and C. J. Robinson: Appl. Phys. Lett. 62 (1993) 1085.

    Article  ADS  Google Scholar 

  50. R. Berman: Proc. Phys. Soc. A 65 (1952) 1029.

    Google Scholar 

  51. K. Watari, H. Nakano, K. Sato, K. Urabe, K. Ishizaki, S. Cao, and K. Mori: J. Am. Ceram. Soc. 86 (2003) 1812.

    Google Scholar 

  52. K. Watari, H. Nakano, K. Urabe, K. Ishizaki, S. Cao, and K. Mori: J. Mater. Res. 17 (2002) 2940.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Francois Bisson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bisson, JF., Yagi, H., Yanagitani, T. et al. Influence of the Grain Boundaries on the Heat Transfer in Laser Ceramics. OPT REV 14, 1–13 (2007). https://doi.org/10.1007/s10043-007-0001-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-007-0001-9

Key words

Navigation