Skip to main content

Advertisement

Log in

Groundwater-wetland ecosystem interaction in the semiarid glaciated plains of North America

Interaction des écosystèmes eau souterraine-zone humide sur une plaine glaciaire semi-aride d’Amérique du Nord

Interacción el agua subterránea y el ecosistema de un humedad en la llanura glacial semiárida de Norteamérica

Interacção águas subterrâneas-ecossistemas húmidos em planícies geladas semi-áridas da América do Norte

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The prairie wetlands of northern USA and Canada exist in numerous topographical depressions within the glaciated landscape. The wetlands are disconnected from each other most of the time with respect to surface-water drainage. The wetland water balance is controlled by snowmelt runoff and snowdrift from the surrounding uplands, precipitation, evapotranspiration, groundwater exchange, and occasional “fill-spill” connections to other wetlands. Salinity of water and the seasonal variability of water level in these wetlands have a strong influence on the ecosystem. Clay-rich glacial tills, covering much of the region, have very low (0.001–0.01 m/yr) hydraulic conductivity, except for the top several meters where the factures and macropores increase conductivity up to 1,000 m/yr. Transpiration in the wetland margin induces infiltration and lateral flow of shallow groundwater from wetland ponds through the high-conductivity zone, which strongly affects the water balance of wetlands. In contrast, groundwater flow in the deeper low-conductivity till has minor effects on water balance, but has a strong influence on salinity because the flow direction determines if the salts accumulate in wetlands (upward flow) or are leached out (downward flow) under wetlands. Understanding of the roles of shallow and deep groundwater systems will improve the hydrological conceptual framework for the management of wetland ecosystems.

Résumé

Des prairies de zones humides du Nord des Etats-Unis et du Canada existent dans de nombreuses dépressions de morphologie glaciaire. Du point de vu réseau de drainage, les zones humides sont la plupart du temps déconnectées entre elles. Le bilan en eau des zones humides est contrôlé par le ruissellement de la neige fondue et des congères des collines avoisinantes, les précipitations, l’évapotranspiration, l’échange avec les eaux souterraines, et des connexions occasionnelles de type “fill-spill” vers d’autres zones humides. La salinité des eaux et la variabilité saisonnière des niveaux d’eau dans ces zones humides ont une forte influence sur les écosystèmes. Les moraines glacières riches en argiles recouvrant une grande partie de la région ont des conductivités hydrauliques très faibles (0.001–0.01 m/an) sauf pour les quelques derniers mètres où les fractures et macropores augmentent la conductivité jusqu’à 1000 m/an. La transpiration dans les bordures des zones humides provoque des infiltrations et un flux latéral d’eau souterraine superficielle depuis les lacs des zones humides à travers les zones de haute conductivité, ce qui affecte fortement la balance hydrique. Au contraire, les flux souterrains dans les parties profondes et les moraines glaciaires de faible conductivité ont un effet mineur sur le bilan hydrique mais une forte influence sur la salinité du fait que les directions de flux déterminent si les sels s’accumulent dans les zones humides où s’ils sont lessivés vers les zones humides. La compréhension du rôle des aquifères de faible et grande profondeur permettra d’améliorer le schéma conceptuel pour la gestion des écosystèmes des zones humides.

Resumen

Los humedales del norte de Estados Unidos y Canadá existen en numerosas depresiones topográficas en un paisaje de origen glacial. Con respecto al drenaje superficial, los humedales están conectados entre sí la mayor parte del tiempo. El balance de agua en un humedal está controlado por el derretimiento de nieve, la interacción con agua subterránea, y ocasionalmente conexiones de tipo “llenado/vertido” hacia otros humedales. La salinidad y la variabilidad estacional del nivel de agua de estos humedales tienen una fuerte influencia en el ecosistema. El “till” glacial rico en arcilla, que cubre la mayor parte de la región, posee una conductividad hidráulica muy baja (0.001–0.01 m/año), excepto para los metros superiores donde las fracturas y macroporos incrementan la conductividad hasta 1000 m/año. La transpiración en la margen del humedal induce infiltración y flujo lateral de agua subterránea poco profunda desde lagunas a través de zonas de alta permeabilidad, lo que afecta fuertemente el balance de agua en los humedales. En contraste, el flujo de agua subterránea en el “till” más profundo y de baja permeabilidad tiene efectos menores en el balance de agua, aunque una influencia mayor en la salinidad dado que la dirección del flujo determina si las sales se acumulan en el humedal (flujo ascendente) o percolan hacia abajo (flujo descendente) debajo del humedal. Entender los roles de los sistemas de flujo subterráneo profundo y poco profundo mejorará el marco hidrológico conceptual para el manejo de ecosistemas de humedales.

Resumo

As planícies húmidas do norte dos EUA e Canadá existem em numerosas depressões topográficas da paisagem gelada envolvente. No que respeita à ligação com os sistemas de drenagem superficial, essas zonas húmidas não estão inter-ligadas durante a maior parte do tempo. O balanço hídrico das zonas húmidas é controlado pelo escoamento superficial durante o degelo nas zonas elevadas circundantes, pela precipitação, pela evapotranspiração, pelo escoamento de água subterrânea e por transvazes ocasionais de outras zonas húmidas. A salinidade da água e a variação sazonal do nível de água nessas zonas húmidas exercem uma forte influência sobre o ecossistema. Os depósitos argilosos de origem glaciar (tills) que formam a cobertura sedimentar em grande parte da região, possuem condutividade hidráulica muito reduzida (0.001–0.01 m/ano), excepto na zona superficial, em que as fracturas e macro-poros aumentam a condutividade para valores até 1000 m/ano. A transpiração nas margens das zonas húmidas induz infiltração e escoamento lateral das águas subterrâneas pouco profundas das zonas dos lagos e através da zona de maior condutividade, afectando seriamente o balanço hídrico das zonas húmidas. Por contraste, o escoamento das águas subterrâneas nos níveis mais profundos, nos tills de menor condutividade, tem um efeito mínimo sobre o balanço hídrico, mas exerce grande influência na salinidade das águas pois a direcção de fluxo determina se a salinização se acumula nas zonas húmidas (fluxo ascendente) ou é dissipado (fluxo descendente) sob as zonas húmidas. A compreensão da influência dos sistemas de água subterrânea de maior e menor profundidade permitirá melhorar o enquadramento hidrológico conceptual para a gestão dos ecossistemas das zonas húmidas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arndt JL, Richardson JL (1989) Geochemistry of hydric soil salinity in a recharge-throughflow-discharge prairie-pothole wetland system. Soil Sci Soc Am J 53:848–855

    Google Scholar 

  • Arndt JL, Richardson JL (1993) Temporal variations in the salinity of shallow groundwater from the periphery of some North Dakota wetlands (USA). J Hydrol 141:75–105

    Article  Google Scholar 

  • Batt BFJ, Anderson MG, Anderson CD, Caswell FD (1989) The use of prairie potholes by North American ducks. In: van der Valk A (ed) Northern prairie wetlands. Iowa State University Press, Ames, Iowa, pp 204–227

    Google Scholar 

  • Berthold S, Bentley LR, Hayashi M (2004) Integrated hydrogeological and geophysical study of depression-focused groundwater recharge in the Canadian prairies. Water Resour Res 40, W06505. doi:10.1029/2003WR002982

    Article  Google Scholar 

  • Bethke RW, Nudds TD (1995) Effects of climate change and land use on duck abundance in Canadian prairie parklands. Ecol Appl 5:588–600

    Article  Google Scholar 

  • Bodhinayake W, Si BC (2004) Near-saturated surface soil hydraulic properties under different land uses in the St. Denis National Wildlife Area, Saskatchewan, Canada. Hydrol Process 18:2835–2850

    Article  Google Scholar 

  • Butler JJ, Kluitenberg GJ, Whittemore DO, Loheide SP II, Jin W, Billinger MA, Zhan X (2007) A field investigation of phreatophyte-induced fluctuations in the water table. Water Resour Res 43, W02404. doi:10.1029/2005W004627

    Article  Google Scholar 

  • Celia MA, Bouloutas ET, Zarba RL (1990) A general mass-conservative numerical solution for the unsaturated flow equation. Water Resour Res 26:1483–1496

    Google Scholar 

  • Conly FM, Su M, van der Kamp G, Millar JB (2004) A practical approach to monitoring water levels in prairie wetlands. Wetlands 24:219–226

    Article  Google Scholar 

  • de Jong E, Kachanoski RG (1987) The role of grasslands in hydrology. In: Healy MC, Wallace RR (eds) Canadian aquatic resources. Can Bull Fish Aquat Sci 215:213–241

  • Driver EA, Peden DG (1977) The chemistry of surface water in prairie ponds. Hydrobiologia 53:33–48

    Article  Google Scholar 

  • Dunne T, Leopold LB (1978) Water in environmental planning. Freeman, New York, 818 pp

    Google Scholar 

  • Eisenlohr WS (1972) Hydrology of prairie potholes in North Dakota. US Geol Surv Prof Pap 585-A, 102 pp

  • Euliss NHJ, Mushet DM (1996) Water-level fluctuation in wetlands as a function of landscape condition in the prairie pothole region. Wetlands 16:587–593

    Google Scholar 

  • Euliss NHJ, LaBaugh JW, Fredrickson LH, Mushet DM, Laubhan MK, Swanson GA, Winter TC, Rosenberry DO, Nelson RD (2004) The wetland continuum: a conceptual framework for interpreting biological studies. Wetlands 24:448–458

    Article  Google Scholar 

  • Gerla PJ (1992) The relationship of water-table changes to the capillary fringe, evapotranspiration, and precipitation in intermittent wetlands. Wetlands 12:91–98

    Google Scholar 

  • Gray DM, Toth B, Zhao L, Pomeroy JW, Granger RJ (2001) Estimating areal snowmelt infiltration into frozen soils. Hydrol Process 15:3095–3111

    Article  Google Scholar 

  • Haitjema HM, Mitchell-Bruker S (2005) Are water tables a subdued replica of the topography? Ground Water 43:781–786

    Google Scholar 

  • Hayashi M (1996) Surface-subsurface transport cycle of chloride induced by wetland-focused groundwater recharge. PhD Thesis, University of Waterloo, Canada, 140 pp

    Google Scholar 

  • Hayashi M, van der Kamp G (2000) Simple equations to represent the volume-area-depth relations of shallow wetlands in small topographic depressions. J Hydrol 237:74–85

    Article  Google Scholar 

  • Hayashi M, van der Kamp G (2007) Water level changes in ponds and lakes: the hydrological processes. In: Johnson EA, Miyanishi K (eds) Plant disturbance ecology. Academic, San Diego, pp 311–339

  • Hayashi M, van der Kamp G, Rudolph DL (1997) Use of tensiometer response time to determine the hydraulic conductivity of unsaturated soil. Soil Sci 162:566–575

    Article  Google Scholar 

  • Hayashi M, van der Kamp G, Rudolph DL (1998a) Mass transfer processes between a prairie pothole and adjacent uplands, 1: water balance. J Hydrol 207:42–55

    Article  Google Scholar 

  • Hayashi M, van der Kamp G, Rudolph DL (1998b) Mass transfer processes between a prairie pothole and adjacent uplands, 2: chloride cycle. J Hydrol 207:56–67

    Article  Google Scholar 

  • Heagle D, Hayashi M, van der Kamp G (2005) Use of sulfur mass and distribution to investigate long-term hydrology in a prairie wetland. Sixth Joint Groundwater Specialty Conference of the International Association of Hydrogeologists - Canadian National Chapter and the Canadian Geotechnical Society, Saskatoon, SK, Canada, 8 pp

  • Heagle DJ, Hayashi M, van der Kamp G (2007) Use of solute mass balance to quantify geochemical processes in a prairie recharge wetland. Wetlands 27:806–818

    Article  Google Scholar 

  • Heliotis FD, DeWitt CB (1987) Rapid water table responses to rainfall in a northern peatland ecosystem. Water Resour Bull 23:1011–1016

    Google Scholar 

  • Helmke MF, Simpkins WW, Horton R (2005) Fracture-controlled nitrate and atrazine transport in four Iowa till units. J Environ Qual 34:227–236

    Article  Google Scholar 

  • Hendry MJ, Wassenaar LI (1999) Implications of the distribution of δD in pore waters for groundwater flow and the timing of geologic events in a thick aquitard system. Water Resour Res 35:1751–1760

    Article  Google Scholar 

  • Hendry MJ, Cherry JA, Wallick E (1986) Origin and distribution of sulfate in a fractured till in southern Alberta, Canada. Water Resour Res 22:45–61

    Article  Google Scholar 

  • Johnson WC, Boettcher SE, Poiani KA, Guntenspergen G (2004) Influence of weather extremes on the water levels of glaciated prairie wetlands. Wetlands 24:385–398

    Article  Google Scholar 

  • Keller CK, van der Kamp G, Cherry JA (1991) Hydrogeochemistry of a clayey till: 1. spatial variability. Water Resour Res 27:2543–2554

    Article  Google Scholar 

  • LaBaugh JW (1989) Chemical characteristics of water in northern prairie wetlands in northern prairie wetlands. In: van der Valk A (ed) Northern prairie wetlands. Iowa State University Press, Ames, Iowa, pp 57–90

    Google Scholar 

  • LaBaugh JW, Winter TC, Swanson GA, Rosenberry DO, Nelson RD, Euliss NH (1996) Changes in atmospheric circulation patterns affect midcontinent wetlands sensitive to climate. Limnol Oceanogr 41:864–870

    Google Scholar 

  • Lissey A (1971) Depression-focused transient groundwater flow patterns in Manitoba. Geol Assoc Can Spec Pap 9:333–341

    Google Scholar 

  • McKay LD, Cherry JA, Gillham RW (1993) Field experiments in a fractured clay till, 1: hydraulic conductivity and fracture aperture. Water Resour Res 29:1149–1162

    Article  Google Scholar 

  • Meyboom P (1966) Unsteady groundwater flow near a willow ring in hummocky moraine. J Hydrol 4:38–62

    Article  Google Scholar 

  • Meyboom P (1967) Groundwater studies in the Assiniboine River drainage basin. Part II: Hydrologic characteristics of phreatophytic vegetation in south-central Saskatchewan. Geol Surv Can Spec Bull 139

  • Millar JB (1971) Shoreline-area ratio as a factor in rate of water loss from small sloughs. J Hydrol 14:259–284

    Article  Google Scholar 

  • Mills JG, Zwarich MA (1986) Transient groundwater flow surrounding a recharge slough in a till plain. Can J Soil Sci 66:121–134

    Google Scholar 

  • Millar JB (1976) Wetland classification in western Canada: a guide to marshes and shallow open water wetlands in the grasslands and parklands of the prairie provinces. Report Series No. 37, Canadian Wildlife Service, Ottawa, Canada

  • Miller JJ, Acton DF, St Arnaud RJ (1985) The effect of groundwater on soil formation in a morainal landscape in Saskatchewan. Can J Soil Sci 65:293–307

    Google Scholar 

  • Morton FI (1983) Operational estimates of lake evaporation. J Hydrol 66:77–100

    Article  Google Scholar 

  • Naugle DE, Higgins KF, Nusser SM, Johnson WC (1999) Scale-dependent habitat use in three species of prairie wetland birds. Landsc Ecol 14:267–276

    Article  Google Scholar 

  • Parkhurst RS, Winter TC, Rosenberry DO, Sturrock AM (1998) Evaporation from a small prairie wetland in the Cottonwood Lake area, North Dakota: an energy-budget study. Wetlands 18:272–287

    Google Scholar 

  • Parsons DF, Hayashi M, van der Kamp G (2004) Infiltration and solute transport under a seasonal wetland: bromide tracer experiments in Saskatoon, Canada. Hydrol Process 18:2011–2027

    Article  Google Scholar 

  • Pechmann JHK, Scott DE, Gibbons JW, Semlitsch RD (1989) Influence of wetland hydroperiod on diversity and abundance of metamorphosing juvenile amphibians. Wetlands Ecol Manage 1:3–11

    Article  Google Scholar 

  • Remenda VH, van der Kamp G, Cherry JA (1996) Use of vertical profiles of δ18O to constrain estimates of hydraulic conductivity in a thick, unfractured aquitard. Water Resour Res 32:2979–2987

    Article  Google Scholar 

  • Rosenberry DO, Winter TC (1997) Dynamics of water-table fluctuations in an upland between two prairie-pothole wetlands in North Dakota. J Hydrol 191:266–289

    Article  Google Scholar 

  • Rozkowski A (1967) The origin of hydrochemical patterns in hummocky moraine. Can J Earth Sci 4:1065–1092

    Google Scholar 

  • Semlitsch RD, Bodie JR (1998) Are small, isolated wetlands expendable? Conserv Biol 12:1129–1133

    Article  Google Scholar 

  • Shaw RJ, Hendry MJ (1998) Hydrogeology of a thick clay till and Cretaceous clay sequence, Saskatchewan, Canada. Can Geotech J 35:1041–1052

    Article  Google Scholar 

  • Shjeflo JB (1968) Evapotranspiration and the water budget of prairie potholes in North Dakota. US Geol Surv Prof Pap 585-B:49

    Google Scholar 

  • Simpkins WW, Bradbury KR (1992) Groundwater flow, velocity, and age in a thick, fine-grained till unit in southeastern Wisconsin. J Hydrol 132:283–319

    Article  Google Scholar 

  • Sloan CE (1972) Ground-water hydrology of prairie potholes in North Dakota. US Geol Surv Prof Pap 585-C:28

    Google Scholar 

  • Steinwand AL, Richardson JL (1989) Gypsum occurrence in soils on the margin of semipermanent prairie pothole wetlands. Soil Sci Soc Am J 53:836–842

    Google Scholar 

  • Stewart RE, Kantrud HA (1972) Vegetation of prairie potholes, North Dakota, in relation to quality of water and other environmental factors. US Geol Surv Prof Pap 585-D:36

    Google Scholar 

  • Stolte WJ, Barbour SL, Eilers RG (1992) A study of the mechanisms influencing salinity development around prairie sloughs. Trans Am Soc Agri Eng 35:795–800

    Google Scholar 

  • Stewart RE, Kantrud HA (1971) Classification of natural ponds and lakes in the glaciated prairie region, Resource Publication 92, United States Department of the Interior, Fish and Wildlife Service, Bureau of Sport Fisheries and Wildlifee, Washington, DC, 57 pp

  • Su M, Stolte WJ, van der Kamp G (2000) Modeling Canadian prairie wetland hydrology using a semi-distributed streamflow model. Hydrol Process 14:2405–2422

    Article  Google Scholar 

  • Swanson KD (1990) Chemical evaluation of ground-water in clay till in a prairie wetland setting in the Cottonwood Lake area, Stutsman County, North Dakota, MS Thesis, University of Wisconsin, Madison, WI, 229 pp

  • Swanson GA, Duebbert HF (1989) Wetland habitats of waterfowl in the prairie pothole region. In: van der Valk A (ed) Northern prairie wetlands. Iowa State University Press, Ames, Iowa, pp 228–267

    Google Scholar 

  • Swanson GA, Winter TC, Adomaitis VA, Labaugh JW (1988) Chemical characteristics of prairie lakes in south-central North Dakota: their potential for influencing use by fish and wildlife. US Department of the Interior, Fish and Wildlife Service Technical Report 18:44

    Google Scholar 

  • Swanson GA, Euliss NHJ, Hanson BA, Mushet DM (2003) Dynamics of a prairie pothole wetland complex: implication for wetland management. In: Winter TC (ed) Hydrological, chemical, biological characteristics of a prairie pothole wetland complex under highly variable climate conditions: the Cottonwood Lake Area, east-central North Dakota. US Geol Surv Prof Pap 1675:55–94

    Google Scholar 

  • Toth J (1963) A theoretical analysis of groundwater flow in small drainage basins. J Geophys Res 68:4795–4812

    Article  Google Scholar 

  • Troxell HC (1936) The diurnal fluctuation in the ground-water and flow of the Santa Ana River and its meaning. Trans Am Geophys Union Part II:496–504

    Google Scholar 

  • van der Kamp G (2001) Methods for determining the in situ hydraulic conductivity of shallow aquitards-an overview. Hydrogeol J 9:5–16

    Article  Google Scholar 

  • van der Kamp G, Hayashi M (1998) The groundwater recharge function of small wetlands in the semi-arid northern prairies. Great Plains Res 8:39–56

    Google Scholar 

  • van der Kamp G, Stolte WJ, Clark RG (1999) Drying out of small prairie wetlands after conversion of their catchments from cultivation to permanent brome grass. Hydrol Sci J 44:387–397

    Article  Google Scholar 

  • van der Kamp G, Hayashi M, Gallén D (2003) Comparing the hydrology of grassed and cultivated catchments in the semi-arid Canadian prairies. Hydrol Process 17:559–575

    Article  Google Scholar 

  • Van Stempvoort DR, Hendry MJ, Schoenau JJ, Krouse HR (1994) Sources and dynamics of sulphur in weathered till, western glaciated plains of North America. Chem Geol 111:35–56

    Article  Google Scholar 

  • Winter TC (1978) Numerical simulation of steady state three-dimensional groundwater flow near lakes. Water Resour Res 14:245–254

    Article  Google Scholar 

  • Winter TC (1989) Hydrologic studies of potholes in the northern prairies. In: van der Valk A (ed) Northern prairie wetlands. Iowa State University Press, Ames, Iowa, pp 17–54

    Google Scholar 

  • Winter TC (2003) Geohydrologic setting of the Cottonwood Lake Area. In: Winter TC (ed) Hydrological, chemical, biological characteristics of a prairie pothole wetland complex under highly variable climate conditions: the Cottonwood Lake Area, east-central North Dakota. US Geol Surv Prof Pap 1675:1–24

    Google Scholar 

  • Winter TC, Rosenberry DO (1995) The interaction of groundwater with prairie potholes in the Cottonwood lake area, east-central North Dakota, 1979–1990. J Hydrol 15:193–221

    Google Scholar 

  • Winter TC, Rosenberry DO (1998) Hydrology of prairie pothole wetlands during drought and deluge: a 17-year study of the Cottonwood Lake wetland complex in North Dakota in the perspective of longer term measured and proxy hydrological records. Clim Change 40:189–209

    Article  Google Scholar 

  • Winter TC, LaBaugh JW (2003) Hydrologic consideration in defining isolated wetlands. Wetlands 23:532–540

    Article  Google Scholar 

  • Woo MK, Rowsell RD (1993) Hydrology of a prairie slough. J Hydrol 146:175–207

    Article  Google Scholar 

  • Zebarth BJ, De Jong E Henry JL (1989) Water flow in a hummocky landscape in Central Saskatchewan, Canada, II. Saturated flow and groundwater recharge. J Hydrol 110:181–198

    Article  Google Scholar 

Download references

Acknowledgements

Many people have contributed and many are still contributing to the hydrologic studies of prairie wetlands. We particularly want to acknowledge the work of J.B. Millar, whose persistence and dedication in long-term monitoring of water level data enabled us to gain significant insights into wetland hydrology. Although the opinions expressed in this paper are our own, we have benefited greatly from discussions with graduate students, technical assistants, and especially our partners in the wetlands work, Malcolm Conly and the late Bill Stolte. The field research program at the St. Denis National Wildlife Area was supported by Ducks Unlimited Canada, Natural Sciences and Engineering Research Council, Environment Canada Science Horizons Program, and the Climate Change Action Fund. Constructive comments by the three anonymous reviewers and the Guest Editor improved the quality and focus of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Hayashi.

Additional information

Part of the material in this paper has been published in the Proceedings of the 36th International Association of Hydrogeologists Congress, Toyama, Japan, October 26–November 1, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Kamp, G., Hayashi, M. Groundwater-wetland ecosystem interaction in the semiarid glaciated plains of North America. Hydrogeol J 17, 203–214 (2009). https://doi.org/10.1007/s10040-008-0367-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-008-0367-1

Keywords

Navigation