Skip to main content
Log in

Flow regime analyses during the filling stage in powder metallurgy processes: experimental study and numerical modelling

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Experimental and numerical studies of powder flow during the die filling stage in powder metallurgy cold compaction processes are presented. An experimental setting consisting of a horizontal pneumatically activated shoe, a vertical die and high-speed video system has been designed. The experiments show the existence of three flow regimes: continuous, transitory and discrete, which are identified in terms of the particle size, the morphology and the speed of the shoe. In the continuous regime the powder flows in a progressive manner but in the discrete one some perturbations appear as a consequence of a shear band formation that forms discrete avalanches. A numerical model, based on a rate-dependent constitutive model, via a flow formulation, and in the framework of the particle finite element method (PFEM) is also proposed. For the purpose of this study, the use of the PFEM assumes that the powder can be modelled as a continuous medium. The model, provided with the corresponding characterisation of the parameters, is able to capture the two fundamental phenomena observed during the filling process: (1) the irreversibility of most of the deformation experienced by the material and (2) the quick dissipation of the potential gravitatory energy of the granular system through the inter-particle friction processes, modelled by the plastic dissipation associated with the material model. Experimental and numerical results have been compared in order to study the viability of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allen, P.: Introduction to molecular dynamics simulation. In: Attig, N., Binder, K., Grubmüller, H., Kurt, K. (eds.) Computational Soft Matter: From Synthetic Polymers to Proteins. John von Neumann Ins. for Comp., Jülich, NIC Series, vol. 23, pp. 1–28. ISBN 3-00-012641-4 (2004)

  2. Bardet J.P., Proubet J.: Shear band analysis in idealized granular materials. J. Eng. Mech. 118, 397 (1992)

    Article  Google Scholar 

  3. Barker G.C., Mehta A., Grimson M.J.: Comment on three-dimensional model for particle size segregation by haking Phys. Rev. Lett. 70, 2194 (1993)

    Article  ADS  Google Scholar 

  4. Baxter G.W., Behringer R.P.: Cellular automata models of granular flow. Phys. Rev. A 42, 1017 (1990)

    Article  ADS  Google Scholar 

  5. Baxter G.W., Behringer R.P.: Cellular automata models for the flow of granular materials. Phys. D 51, 465 (1991)

    Article  MATH  Google Scholar 

  6. Beverloo W.A., Leniger H.A., Van De Velde J.: The flow of granular solids through orifices. Chem. Eng. Sci. 15, 260–269 (1961)

    Article  Google Scholar 

  7. Belytschko T., Liu Y., Gu L.: Element free galerkin methods. Int. J. Num. Methods Eng. 37, 229–256 (1994)

    Article  MATH  Google Scholar 

  8. Brekelmans W.A.M., Janssen J.D., Van De Ven A.A.F.: An eulerian approach for die compaction processes. Int. J. Num. Methods Eng. 31, 509–524 (1991)

    Article  MATH  Google Scholar 

  9. Calvo N., Idelsohn S.R., Onate E.: The extended delaunany tessellation. Eng. Comput. 20, 583–600 (2003)

    Article  MATH  Google Scholar 

  10. Cante J.C., Oliver J., Gonzalez C., Calero J.A., Benítez F.: On the numerical simulation of powder compaction processes: powder transfer modelling and characterization. Powder Metall. 48(1), 85–92 (2005)

    Article  Google Scholar 

  11. Cante, J.C., Oliver, J., Weyler, R., Hernandez, J.: Numerical Modelling of Granular Material Flow by the Particle Finite Element Method (In preparation)

  12. Caram H., Hong D.C.: Random-walk approach to granular flows. Phys. Rev. Lett. 67, 828 (1991)

    Article  ADS  Google Scholar 

  13. Caram H., Hong D.C.: Diffusing void model for granular flow. Mod. Phys. Lett. B 6, 761 (1992)

    Article  ADS  Google Scholar 

  14. Coube O., Cocks A.C.F., Wu C.-Y.: Experimental and numerical study of die filling, powder transfer and die compaction. Powder Metall. 48(1), 68–76 (2005)

    Article  Google Scholar 

  15. Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  16. De S., Bathe K.J.: The method of finite spheres with improved numerical integration. Comput. Struct. 79, 2183–2196 (2001)

    Article  MathSciNet  Google Scholar 

  17. Gethin D.T, Tran D.V., Lewis R.W., Ariffin A.K.: An investigation of powder compaction processes. Int. J. Powder Metall. 30, 385–398 (1994)

    Google Scholar 

  18. Goon, G.Y., Poluchin, P.I., Poluchin, W.P., Prudcowsky, B.A.: The plastic deformation of metals. Metallurgica (in Russian, 1968)

  19. Haggblad H.A., Oldenburg M.: Modelling and simulation of metal powder die pressing with use of explicit time integration. Model. Simul. Muter. Sci. Eng. 2, 893–911 (1994)

    Article  ADS  Google Scholar 

  20. Herrmann H.J.: Structures in deformed granular packings. Granul. Matter 3, 15–18 (2001)

    Article  Google Scholar 

  21. Hjortsberg E., Bergquist B.: Filling induced density variations in metal powder. Powder Metall. 45(2), 146–153 (2002)

    Article  Google Scholar 

  22. Idelsohn S.R., Onate E., Del Pin F.: A lagrangian meshless finite element method applied to fluid-structure interaction problems. Comput. Struct. 81, 655–671 (2003)

    Article  Google Scholar 

  23. Idelsohn S.R., Oñate E., Del Pin F.: The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int. J. Num. Methods Eng. 61, 964–989 (2004)

    Article  MATH  Google Scholar 

  24. Istúriz, A.: Estudio experimental del llenado de moldes pulvimetalúrgicos. PhD thesis (2006)

  25. Isturiz A., Riera M.D., Prado J.M.: Experimental study of die filling in powder metallurgy. Rev. Metal. Madr. Extr, 181–186 (2005)

    Google Scholar 

  26. Jinka, A.G., Lewis, R.W., Gethin, D.T.: Finite element simulation of powder compaction via the flow formulation. In: Proceedings of the 1992 Powder Metallurgy World Congress, p2 (92-V2), pp. 123–144

  27. Kaye B.H.: Powder Mixing, Powder Technology Series. Chapman & Hall, London (1997)

    Google Scholar 

  28. Khoei A.R., Lewis R.W.: Adaptive finite remeshing in a large deformation analysis of metal powder forming. Int. J. Num. Methods Eng. 45, 801–820 (1999)

    Article  MATH  Google Scholar 

  29. Lewis R.W., Khoei A.R.: Numerical modelling of large deformation in metal powder forming. Cornput. Meth. Appl. Mech. Eng. 159, 291–328 (1998)

    Article  MATH  Google Scholar 

  30. Lubliner J.: Plasticity Theory. Macmillan Publishing, New York (1990)

    MATH  Google Scholar 

  31. Luding S.: Molecular dynamics simulations of granular materials. In: Hinrichsen, H., Wolf, D. (eds) The Physics of Granular Media, pp. 299–324. Wiley, Weinheim (2004) (ISBN 3-527-40373-6)

    Google Scholar 

  32. Meakin P., Jullien R.: Simple models for two and three dimensional particle size segregation. Phys. A 180, 1 (1992)

    Article  ADS  Google Scholar 

  33. Modnet P.M.: Comparison of computer representing powder compaction process: state of the art review. Computer Model. Group Powder Metall. 42(4), 301–311 (1999)

    Google Scholar 

  34. Modnet P.M.: Numerical simulation of powder compaction for two multilevel ferrous parts, including powder characterization and experimental validation. Res. Group Powder Metall. 45, 335–344 (2002)

    Article  Google Scholar 

  35. Oliver J., Oller S., Cante J.C.: A plasticity model for simulation of industrial powder compaction processes. Int. J. Solids Struct 33, 3161–3178 (1996)

    Article  MATH  Google Scholar 

  36. Oñate E., Idelsohn S.R., Zienkiewicz O.C., Taylor R.L.: A finite point method in computational mechanics. Applications to convective transport and fluid flow. Int. J. Num. Methods Eng. 39(22), 3839–3886 (1996a)

    Article  MATH  Google Scholar 

  37. Rajchenbach J.: Flow in powders: from discrete avalanches regime to continuous regime. Phys. Rev. Lett. 65, 2221–2225 (1990)

    Article  ADS  Google Scholar 

  38. Ristow, G.H.: Flow properties of granular materials in three-dimensional geometries. PhD Thesis. Philipps-Universität Marburg (1998)

  39. Rosato A.D., Prinz F., Strandburg K., Swendsen R.: Monte carlo simulation of particulate matter segregation. Powder Technol. 49, 59 (1986)

    Article  Google Scholar 

  40. Rosato A.D., Strandburg K.J., Prinz F., Swendsen R.H.: Why the Brazil Nuts are on top: size segregation of particulate matter by shaking. Phys. Rev. Lett. 58, 1038 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  41. Rudnicki J.W., Rice J.R.: Conditions for localization of deformation in pressure-sensitive dilatant materials. J. Mech. Phys. Solids 23, 371 (1975)

    Article  ADS  Google Scholar 

  42. Schneider L.C.R., Cocks A.C.F., Apostolopoulos A.: Comparison of filling behaviour of metallic, ceramic, hardmetal and magnetic powders. Powder Metall. 48(1), 77–84 (2005)

    Article  Google Scholar 

  43. Schneider, L.C.R., Cocks, A.C.F.: Development and test results of a low pressure instrumented die. (to appear in Powder Metallurgy)

  44. Van-Burkalow A.: Angle of repose and angle of sliding friction: an experimental study. Bull. Geol. Soc. Am. 56, 669 (1945)

    Article  Google Scholar 

  45. Weber G.G., Brown S.: Simulation of the Compaction of Powder Components, Advances in Powder Metallurgy, pp. 08540. MPIF/APMI, Princeton (1989)

    Google Scholar 

  46. Wu C.-Y., Cocks A.C.F., Gillia O.T.: Experimental and numerical investigations of die filling and powder transfer. Adv. Powder Metall. Part. Mater. 4, 258–272 (2002)

    Google Scholar 

  47. Wu C.-Y., Cocks A.C.F., Gillia O.T., Thompson D.A.: Exp. num. Investig. Powder Transf. Powder Technol. 138, 216–228 (2003)

    Article  Google Scholar 

  48. Wu C.-Y, Cocks A.C.F.: Flow behaviour of powders during die filling. Powder Metall. 47(2), 127–136 (2004)

    Article  Google Scholar 

  49. Zenger D.C., Cai H.H.: Handbook of: the Common Cracks in P/M Compacts. Metal Powder Industries Federation, NJ (1997)

    Google Scholar 

  50. Zienkiewicz O.C., Godbole P.N.: Flow of plastic and visco-plastic solids with special referente to extrusion and forming processes. Int. J. Num. Methods Eng. 8, 3–16 (1974)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Manuel Prado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cante, J.C., Riera, M.D., Oliver, J. et al. Flow regime analyses during the filling stage in powder metallurgy processes: experimental study and numerical modelling. Granular Matter 13, 79–92 (2011). https://doi.org/10.1007/s10035-010-0225-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-010-0225-4

Keywords

Navigation