Skip to main content
Log in

Investigation of Pr2NiMnO6‐Ce0.9Gd0.1O1.95 composite cathode for intermediate-temperature solid oxide fuel cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical performance of Pr2NiMnO6 (PNMO)-xCe0.9Gd0.1O1.95 (CGO) (x = 0–40 wt%) composite oxides as intermediate-temperature solid oxide fuel cell (IT-SOFC) cathode materials are evaluated. The electrochemical impedance spectroscopy (EIS) analysis results identify two consecutive electrode processes on the composite cathode. Among the various composites, PNMO-30CGO cathode exhibits the best electrochemical performance with the minimum polarization resistance of 0.23 Ω cm2 and the maximum exchange current density of 75 mA cm−2 at 700 °C in air. These values are almost constant even after 30-h operation. The oxygen reduction reaction (ORR) mechanism studies prove that the major rate-determining step is the charge-transfer process. Introducing CGO significantly improves the charge-transfer process, by increasing the triple phase boundary (TPB) length and oxygen vacancy concentration in the composite cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adler SB (2004) Chem Rev 104:4791–4843

    Article  CAS  Google Scholar 

  2. Jacobson AJ (2010) Chem Mater 22:660–674

    Article  CAS  Google Scholar 

  3. Zhou W, Liang FL, Shao ZP, Zhu ZH (2012) Sci Rep 2:327–333

    Google Scholar 

  4. Brett DJL, Atkinson A, Brandon NP, Skinner SJ (2008) Chem Soc Rev 37:1568–1578

    Article  CAS  Google Scholar 

  5. Wang DY, Nowick AS (1979) J Electrochem Soc 126(7):1155–1165

    Article  CAS  Google Scholar 

  6. Takeda Y, Kanno R, Noda M, Yamamoto O (1987) J Electrochem Soc 134:A2656–A2661

    Article  Google Scholar 

  7. Sicbeit E, Hammouche A, Kleitz M (1995) Electrochim Acta 40:1741–1753

    Article  Google Scholar 

  8. Sun LP, Li Q, Zhao H, Hao JH, Huo LH, Pang GS, Shi Z, Feng SH (2012) Int J Hydrog Energy 37:11955–11962

    Article  CAS  Google Scholar 

  9. Escudero MJ, Aguadero A, Alonso JA, Daza L (2007) J Electroanalyt Chem 611:107–116

    Article  CAS  Google Scholar 

  10. Wang JP, Meng FC, Xia T, Shi Z, Lian J, Xu CB, Zhao H, Bassat JM, Grenier JC (2014) Int J Hydrog Energy 39:18392–18404

    Article  CAS  Google Scholar 

  11. Adler SB, Lane JA, Steele BCH (1996) J Electrochem Soc 143:3554–3564

    Article  CAS  Google Scholar 

  12. Murray EP, Sever MJ, Barnett SA (2002) Solid State Ionics 148:27–34

    Article  Google Scholar 

  13. Sun LP, Rieu M, Viricelle JP, Pijolat C, Zhao H (2014) Int J Hydrog Energy 39:1014–1022

    Article  CAS  Google Scholar 

  14. Shi Z, Xia T, Meng FC, Wang JP, Zhao H, Xu CB (2015) Electrochim Acta 174:608–614

    Article  CAS  Google Scholar 

  15. Murray EP, Barnett SA (2001) Solid State Ionics 143:265–273

    Article  Google Scholar 

  16. Lü SQ, Long GH, Ji Y, Meng XW, Sun CC (2010) Int J Hydrog Energy 35:7930–7935

    Article  Google Scholar 

  17. Li H, Sun LP, Li Q, Xia T, Zhao H, Huo LH, Bassat JM, Rougier A, Fourcade S, Grenier JC (2015) Int J Hydrog Energy 40:12761–12769

    Article  CAS  Google Scholar 

  18. Shao ZP, Haile SM (2004) Nature 431:170–173

    Article  CAS  Google Scholar 

  19. Li Q, Xia T, Sun LP, Zhao H, Huo LH (2014) Electrochim Acta 150:151–156

    Article  CAS  Google Scholar 

  20. Zhang G, Li G, Liao F, Fu Y, Xiong M, Lin J (2011) J Cryst Growth 327:262–266

    Article  CAS  Google Scholar 

  21. Patro PK, Delahaye T, Bouyer E (2011) Solid State Ionics 181:1378–1386

    Article  Google Scholar 

  22. Chen XJ, Chan SH, Khor KA (2004) Electrochim Acta 49:1851–1861

    Article  CAS  Google Scholar 

  23. Kuharuangrong S, Dechakupt T, Aungkavattana P (2004) Mater Lett 58:1964–1970

    Article  CAS  Google Scholar 

  24. Chen KF, Ai N, Jiang SP (2014) Int J Hydrog Energy 39:10349–10358

    Article  CAS  Google Scholar 

  25. Tai LW, Nasrallah MM, Anderson HU, Sparlin DM, Sehlin SR (1995) Solid State Ionics 76:273–283

    Article  CAS  Google Scholar 

  26. Leng YJ, Chan SH, Liu QL (2008) Int J Hydrog Energy 33:3808–3817

    Article  CAS  Google Scholar 

  27. Zhao EQ, Jia Z, Zhao L, Xiong YP, Sun CW, Brito EM (2012) J Power Sources 219:133–139

    Article  CAS  Google Scholar 

  28. Zhao EQ, Ma C, Yang W, Xiong YP, Li JQ, Sun CW (2013) Int J Hydrog Energy 38:6821–6829

    Article  CAS  Google Scholar 

  29. Chiba R, Yoshimura F, Sakurai Y (1999) Solid State Ionics 124:281–288

    Article  CAS  Google Scholar 

  30. Huang B, Zhu XJ, Nie HW, Niu YR, Li Y, Cheng N (2013) J Power Sources 235:20–28

    Article  CAS  Google Scholar 

  31. Huang D, Xu Q, Zhang F, Chen W, Liu HX, Zhou J (2006) Mater Lett 60:1892–1895

    Article  CAS  Google Scholar 

  32. Boehm E, Bassat JM, Steil MC, Dordor P, Mauvy F, Grenier JC (2003) Solid State Sci 5:973–981

    Article  CAS  Google Scholar 

  33. Zhao K, Wang YP, Chen M, Xu Q, Kim BH, Huang DP (2014) Int J Hydrog Energy 39:7120–7130

    Article  CAS  Google Scholar 

  34. Nicollet C, Flura A, Vibhu V, Rougier A, Bassat JM, Grenier JC (2015) J Power Sources 294:473–482

    Article  CAS  Google Scholar 

  35. Kaluzhskikh MS, Kazakov SM, Mazo GN, Istomin SY, Antipov EV, Gippius AA (2011) J Solid State Chem 184:698–704

    Article  CAS  Google Scholar 

  36. Sun C, Li Q, Sun LP, Zhao H, Huo LH (2014) Mater Res Bull 53:65–69

    Article  CAS  Google Scholar 

  37. Kolchina LM, Lyskov NV, Petukhov DI, Mazo GN (2014) J Alloys Compd 605:89–95

    Article  CAS  Google Scholar 

  38. Shi Z, Xia T, Meng FC, Wang JP, Lian J, Zhao H, Bassat JM, Grenier JC, Meng J (2014) Fuel Cells 14:979–990

    Article  CAS  Google Scholar 

  39. Shi Z, Xia T, Meng FC, Wang JP, Wu SM, Lian J, Zhao H, Xu CB (2015) Electrochim Acta 174:608–614

    Article  CAS  Google Scholar 

  40. Souza RA, Kilner JA (1998) Solid State Ionics 106:175–187

    Article  Google Scholar 

  41. Souza RA, Kilner JA (1999) Solid State Ionics 126:153–161

    Article  Google Scholar 

  42. Takeda Y, Kanno R, Noda M, Yamamoto O (1987) J Electrochem Soc 134:2656–2661

    Article  CAS  Google Scholar 

  43. Kim JD, Kim GD, Moon JW, Park Y, Lee WH, Kobayashi K, Nagai M, Kim CE (2001) Solid State Ionics 143:379–389

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported by National Natural Science Foundation of China (51302069, 51372073), Foundation of Heilongjiang Educational Department (2013TD002), Nature Science foundation of Heilongjiang Province in China (E2016051), Scientific Research Foundation for Returned Scholars, and Ministry of Human Resources and Social Security of People’s Republic of China (2014-240).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Ping Sun or Hui Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Sun, LP., Feng, Q. et al. Investigation of Pr2NiMnO6‐Ce0.9Gd0.1O1.95 composite cathode for intermediate-temperature solid oxide fuel cells. J Solid State Electrochem 21, 273–280 (2017). https://doi.org/10.1007/s10008-016-3364-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3364-7

Keywords

Navigation