Skip to main content
Log in

Co2(OH)3Cl xerogels with 3D interconnected mesoporous structures as a novel high-performance supercapacitor material

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Co2(OH)3Cl xerogel interconnected mesoporous structures have been prepared by a facile one pot sol-gel process and heat treated at 200 and 400 °C. All samples are studied for their morphology, structure, and electrochemical stability upon cycling. The specific capacitance of the as-prepared Co2(OH)3Cl from single electrode study is 450 F/g, when the electrodes are cycled in 3 M KOH at a specific current 2 A/g. Interestingly, capacity retention after 500 and 1000 cycles is about 92 and 75 %, respectively. Sample heated at 200 °C exhibits 308 F/g at 2 A/g and that heated at 400 °C shows only 32 F/g at 0.2 A/g. With an increase in preparation temperature, amorphous Co2(OH)3Cl is converted to crystalline Co3O4 phases with lower electrochemical performance. In full cell study, as-prepared Co2(OH)3Cl showed a capacity of about 49 F/g as asymmetric capacitor and 32 F/g as symmetric capacitor at 2 A/g current density. Co2(OH)3Cl being a novel porous material with merits of homogeneous porosity, high surface area, and an interconnected three dimensional (3D) structure exhibits considerably high capacitance. With a significant specific capacity and electrochemical stability, the synthesized material is a novel potential candidate for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Conway BE (1999) Kluwer academic/. Plenum Publishers, New York

    Google Scholar 

  2. Arico AS, Bruce PG, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  CAS  Google Scholar 

  3. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

  4. Hall P J, Mirzaeian M, Fletcher S I, Sillars F B, Rennie A J R, Shitta G O B, Wilson G, Cruden A, Carter R (2010) Energy Environ Sci 3:1238–1251

  5. Wang G, Zhang L, Zhang J (2012) Chem. Soc. Rev 41:797–827

  6. Hou J, Shao Y, Ellis W M, Obert B, Moore, Baolian Yi (2011) Phys Chem Chem Phys 13:15384–15402

  7. S. Patil, S. Raut, Gore R, Sankapal B (2015) New J Chem 39:9124–9131

  8. Ma X, Zhang W, Kong L, Luo Y and Kang L (2015) New J Chem 39:6207–6215

  9. Hu C C, Chang K H, Lin M C, Wu Y T (2006) Nano Lett 6:2690–2695

  10. Chou S, Wang J, Liu H, Dou S (2008) J Electrochem Soc 12:A926-A929

  11. Xu H, Zhang C, Zhou W, Li G (2015) Nanoscale 7:16932–16942.

  12. Xie H, Tang S, Gong Z, Vongehr S, Fang F, Li M, Meng X (2014) RSC Adv 4:61753–61758

  13. Park G D, Ko Y N, Kang Y C (2014) Sci Rep 4:578

  14. Park G D, Lee J, Kang Y C (2015) Carbon 84:14–23

  15. G-Martinez O, Millan P, Rojas R. M., Torralvo M J (1988) J Mater Sci 23:1334–1350.

  16. Zheng X, Kawae T, Yamada H, Nishiyama K (2006) Xu C Phys Rev Lett 97:274204

  17. Zheng M. G, Hagihala M, Fujihala M, (2009) Kawae T J Phys Conf Ser 145:012034

  18. Hu ZA (2009) J Phys Chem C 113:12502–12508

    Article  CAS  Google Scholar 

  19. Ma J, Yuan T, He Y-S, Wang J, Zhang W, Yang D, Liao X-Z, Ma Z-F (2014) J Mater Chem A 2:16925–16930

  20. Zhang Z, Yin L (2015) J Mater Chem A 3:17659–17668

    Article  CAS  Google Scholar 

  21. Cui H T, Zayat M and Levy D (1990) J Sol − Gel Sci Techno 35:175–181

  22. Oswald H R, Feitknecht W (1964) 47:272–289

  23. Xia X.-H, Tu J-P, Zhang Y-Q, Mai Y-J, Wang X-L, Gu C-D, Zhao X-B (2012) RSC Adv 2:1835–1841

  24. Xia X-H, Tu J-P, Mai Y-J, Wang X-L, Gu C-D, Zhao X-B (2011) J Mater Chem 21:9319 9325

  25. Ramya R, Manickam M S (2016) New J Chem 40:2863–2877.

  26. Ramya R, Manickam M S (2015) Dalton Trans 44:6158–6168.

  27. Du G, Liu P, Yang X, Zhang J, Wang X, Sun X (2015) RSC Ad 5:38324–38329

  28. Wang R, Yan X, Lang J, Zheng Z, Zhang P (2014) J Mater Chem A 2:12724–12732

  29. Mondal C, Ganguly M, Manna P K, Yusuf S M, Pal T (2013) Langmuir 29:9179–9187.

  30. Huang Q, Wang J, Liu F, Chang X, Chen H, Lin H, Han S, (2016) RSC Adv 6:16745–16750

  31. Devaraj S, Munichandraiah N (2005) Electrochem Solid St 8(7):A373–A377

    Article  CAS  Google Scholar 

  32. Shivakumara S, Penki T R, Munichandraiah N (2014) Mater Lett 131:100–103

  33. Shivakumara S, Penki T R, Munichandraiah N (2014)18:1057–1066

Download references

Acknowledgment

Dr. S Ranganatha acknowledges the financial support from the University Grant Commission (UGC), Government of India, under Dr. D.S. Kothari postdoctoral fellowship program [Ref. No. F.4-2/2006(BSR)/CH/14-15/0133].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ranganatha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranganatha, S., Kumar, S., Penki, T.R. et al. Co2(OH)3Cl xerogels with 3D interconnected mesoporous structures as a novel high-performance supercapacitor material. J Solid State Electrochem 21, 133–143 (2017). https://doi.org/10.1007/s10008-016-3348-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3348-7

Keywords

Navigation