Skip to main content
Log in

Pattern formation during electrodeposition of indium–cobalt alloys

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The investigations on the effect of the electrolysis conditions, including high speed electroplating, on the content, structure, morphology and some properties of electrodeposited In-Co alloys from citrate electrolytes are presented. It was shown that indium and cobalt could be successfully deposited from acid citrate electrolytes and deposition of alloys with indium content between 20 and 80 wt. % is possible. At high cobalt content, heterogeneous multiphase coatings with spatio-temporal structures are obtained. Spatio-temporal structures could be observed also during electrodeposition under intensive hydrodynamic flow and improved mass transport conditions at high current densities. The structures are obtained for the first time from silver- and cyanide-free non-alkaline stable electrolytes of a relatively simple composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Dobrovolska Ts, Veleva L, Krastev I, Zielonka A (2005) Composition and structure of silver-indium alloy coatings electrodeposited from cyanide electrolytes. J Electrochem Soc 152:C137–C142

    Article  CAS  Google Scholar 

  2. Nineva S, Dobrovolska T, Krastev I (2011) Electrodeposition of silver-cobalt coatings. The cyanide-pyrophosphate electrolyte. Bulg Chem Commun 43:96–104

    CAS  Google Scholar 

  3. Nineva S, Dobrovolska T, Krastev I (2011) Properties of electrodeposited silver-cobalt coatings. J Appl Electrochem 41:1397–1406

    Article  CAS  Google Scholar 

  4. Dobrovolska T, Krastev I, Jovic BM, Jovic VD, Beck G, Lacnjevac U, Zielonka A (2011) Phase identification in electrodeposited Ag-Cd alloys by anodic linear sweep voltammetry and X-ray diffraction techniques. Electrochim Acta 56:4344–4350

    Article  CAS  Google Scholar 

  5. Kristev I, Nikolova M (1986) Structural effects during the electrodeposition of silver-antimony alloys from ferrocyanide-thiocyanate electrolytes. J Appl Electrochem 16:875–878

    Article  CAS  Google Scholar 

  6. Krastev I, Valkova T, Zielonka A (2004) Structure and properties of electrodeposited silver-bismuth alloys. J Appl Electrochem 34:79–85

    Article  CAS  Google Scholar 

  7. Valkova T, Krastev I, Zielonka A (2010) Influence of the D(+)-glucose on the electrochemical deposition of Ag-Bi alloy from a cyanide electrolyte. Bulg Chem Commun 42:317–322

    CAS  Google Scholar 

  8. Hrussanova A, Krastev I (2009) Electrodeposition of silver-tin alloys from pyrophosphate-cyanide electrolytes. J Appl Electrochem 39:989–994

    Article  CAS  Google Scholar 

  9. Ts D, Krastev I, Zielonka A (2005) Effect of the electrolyte composition on In and Ag-In alloy electrodeposition from cyanide electrolytes. J Appl Electrochem 35:1245–1251

    Article  Google Scholar 

  10. Krastev I, Ts D (2010) Self-organized structure formation and phase identification in electrodeposited silver-cadmium, silver-indium and cobalt-indium alloys. J Eng Process Manag 2:99–105

    Google Scholar 

  11. Gabay AM, Hadjipanayis GC (2010) Phases and phase equilibria in cobalt-rich Pr-Co-In alloys for permanent magnets. J Alloys Compd 500:161–166

    Article  CAS  Google Scholar 

  12. Sadana YN, Keskinen AE, Guindon M (1975) Electrodeposition of alloys III Electrodeposition and X-ray structure of cobalt-indium alloys (initial studies). Electrodeposition Surf Treat 3:149–157

    Article  CAS  Google Scholar 

  13. Stalzer M (1964) Geräte für Spannungsmessungen an galvanisch abgeschiedenen Schichten und Beschreibung eines neuentwickelten selbstkompensierenden und registrierenden Gerätes. Metalloberfläche 263–267

  14. Wingenfeld P (2004) Selective high-speed plating of noble metals in reel-to-reel plants—Part 6. Galvanotechnik 95:879–884

    CAS  Google Scholar 

  15. Speight JG (2005) Lange’s handbook of chemistry. McGraw-Hill, New York

    Google Scholar 

  16. Alderighi L, Gans P, Ienco A, Peters D, Sabatini A, Vacca A (1999) Hyperquad smulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord Chem Rev 184:311–318

    Article  CAS  Google Scholar 

  17. Maki N, Tanaka N (1975) Cobalt, chapter III. In: Bard JA (ed) Encyclopedia of electrochemisrty of the elements. Marcel Dekker Inc, New York, pp 43–210

    Google Scholar 

  18. Losev VV, Molodov AI (1976) Indium, chapter I. In: Bard JA (ed) Encyclopedia of electrochemisrty of the elements. Marcel Dekker Inc, New York, pp 1–32

    Google Scholar 

  19. Frier M, Ellis J, Aslam M (1996) Stability of radiopharmaceuticals during administration to the intensive care patient. J Clin Pharm Ther 21:149–153

    Article  CAS  Google Scholar 

  20. Mohammad B, Ure AM, Littlejohn D (1993) On-line preconcentration of aluminium, gallium and indium with quinolin-8-ol for determination by atomic absorption spectrometry. J Anal At Spectrom 8:325–331

    Article  CAS  Google Scholar 

  21. Wood SA, Samson IM (2006) The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geol Rev 28:57–102

    Article  Google Scholar 

  22. Lacroix S (1949) E´tude de quelques complexes et compose´ speu solubles des ions Al3+, Ga3+, In3+. Ann Chim 4:5–83

    CAS  Google Scholar 

  23. Liakishev NP (1997) Diagrammy sostojanija dvojnyh metallicheskih sistem. Mashinostroenie, Moskva, pp 37–38

    Google Scholar 

  24. Krastev I, Dobrovolska T, Kowalik R, Zabinski P, Zielonka A (2009) Properties of silver-indium alloys electrodeposited from cyanide electrolytes. Electrochim Acta 54:2515–2521

    Article  CAS  Google Scholar 

  25. Sotirova G, Sarnev S, Armyanov S (1989) Evolution of the included hydrogen, internal stress, microharness and microstructure of electrodeposited cobalt. Electrochim Acta 34:1237–1242

    Article  Google Scholar 

  26. Raub CJ (1990) Jet plating. Laboratory simulation and control. Trans Inst Met Finish 68:115–117

    CAS  Google Scholar 

  27. De Vogelaere M, Sommer V, Springborn H, Michelsen-Mohammadein U (2001) High-speed plating for electronic applications. Electrochim Acta 47:109–116

    Article  Google Scholar 

  28. Qiao G, Jing T, Wang N, Gao Y, Zhao X, Zhou J, Wang W (2006) Effect of current density on microstructure and properties of bulk nanocrystalline Ni-Co alloys prepared by JED. J Electrochem Soc 153:C305–C308

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Deutsche Forschungsgemeinschaft (DFG) for the support of the project 436 BUL 113/97/0-4. They express their gratitude to Umicore Galvanotechnik GmbH, Germany for the given possibility to perform high-speed plating experiments in the Jet-cell.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ts. Dobrovolska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krastev, I., Dobrovolska, T., Lačnjevac, U. et al. Pattern formation during electrodeposition of indium–cobalt alloys. J Solid State Electrochem 16, 3449–3456 (2012). https://doi.org/10.1007/s10008-012-1766-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-012-1766-8

Keywords

Navigation