Skip to main content

Advertisement

Log in

A molecular dynamics study on sI hydrogen hydrate

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A molecular dynamics simulation is carried out to explore the possibility of using sI clathrate hydrate as hydrogen storage material. Metastable hydrogen hydrate structures are generated using the LAMMPS software. Different binding energies and radial distribution functions provide important insights into the behavior of the various types of hydrogen and oxygen atoms present in the system. Clathrate hydrate cages become more stable in the presence of guest molecules like hydrogen.

Metastable sI hydrogen hydrate studied by classical molecular dynamics simulation

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. www.eere.energy.gov. Accessed 6 April 2012

  2. Davy H (1811) Philos Trans R Soc Lond 101:1

    Google Scholar 

  3. Faraday M (1823) Philos Trans R Soc Lond 113:60

    Google Scholar 

  4. Clausen WF (1951) Suggested structures of water in inert gas hydrates. J Chem Phys 19:259–260

    Article  Google Scholar 

  5. Clausen WF (1951) A second water structure for inert gas hydrates. J Chem Phys 19:1425–1426

    Article  Google Scholar 

  6. Muller HR, Stackelberg VM (1952) On the structure of gas hydrates- 2 message. Naturwissenschaften 39:20–21

    Article  CAS  Google Scholar 

  7. Mao W, Mao H, Goncharov A, Struzhkin VV, Guo Q, Hu J, Shu J, Hem-ley R, Somayazulu M, Zhaoi Y (2002) Hydrogen clusters in clathrate hydrate. Science 297:2247–2249

    Article  CAS  Google Scholar 

  8. Mao WL, Mao HK (2004) Hydrogen storage in molecular compounds. Proc Natl Acad Sci 101:708–710

    Article  CAS  Google Scholar 

  9. Vos WL, Finger LW, Hemley RJ, Mao HK (1994) Novel H2-H2O clathrates at high pressures. Phys Rev Lett 71:3150–3153

    Article  Google Scholar 

  10. Powell HM (1948) The structure of molecular compounds. Part IV. Clathrate Compounds. J Chem Soc 61–73 doi:10.1039/JR9480000061

  11. Davidson DW, Frank FE (1973) Water: a comprehensive treatise. Plenum Press New York

    Google Scholar 

  12. Hammerschmidt EG (1934) Formation of gas hydrates in natural gas transmission lines. Ind Eng Chem 26:851–855

    Article  CAS  Google Scholar 

  13. Deaton WM, Frost EM (1964) Gas hydrates and their relation to the operation of natural gas pipelines. J U S Bur Mines Monogr 8

  14. Waals JH, Platteeuw JC (1959) Clathrate solutions. Adv Chem Phys 2:1–57

    Article  Google Scholar 

  15. Somayazulu MS, Finger LW, Hemley RJ, Mao HK (1996) High-pressure compounds in methane-hydrogen mixtures. Science 271:1400–1402

    Article  CAS  Google Scholar 

  16. Loubeyre P, Letoullec R, Pinceaux JP (1994) Compression of Ar(H2)2 up to 175 GPa: a new path for the dissociation of molecular hydrogen? Phys Rev Lett 72:1360–1363

    Article  CAS  Google Scholar 

  17. Lokshin KA, Zhao Y, He D, Mao WL, Mao HK, Hemley RJ, Lobanov MV, Greenblatt M (2004) Structure and dynamics of hydrogen molecules in the novel clathrate hydrate by high pressure neutron diffraction. Phys Rev Lett 93:125503–125506

    Article  Google Scholar 

  18. Mao W, Mao HK (2002) Composition and method for hydrogen storage. USA Patent 6735960

  19. Stackelberg vM (1949) Solid gas hydrate. Naturwissenschaften 3:327–359

    Article  Google Scholar 

  20. Patchkovskii S, Tse J (2003) Thermodynamic stability of hydrogen clathrates. Proc Natl Acad Sci U S A 100:14645–14650

    Article  CAS  Google Scholar 

  21. Sluiter MF, Adachi H, Belosludov RV, Belosludov V, Kawazoe Y (2004) Ab initio study of hydrogen storage in hydrogen clathrate hydrates. Mater Trans 45:1452–1454

    Article  CAS  Google Scholar 

  22. Alavi S, Ripmeester JA, Klug DD (2005) Molecular-dynamics study of structure II hydrogen clathrates. J Chem Phys 123:024507–024513

    Article  Google Scholar 

  23. Inerbaev TM, Belosludov VR, Belosludov RV, Sluiter M, Kawazoe Y (2006) Dynamics and equation of state of hydrogen clathrate hydrate as a function of cage occupation. Comput Mater Sci 36:229–233

    Article  CAS  Google Scholar 

  24. Chattaraj PK, Bandaru S, Mondal S (2011) Hydrogen storage in clathrate hydrates. J Phys Chem A 115:187–193

    Article  CAS  Google Scholar 

  25. Pauling L, Marsh RE (1952) The structure of chlorine hydrate. Proc Natl Acad Sci U S A 38:112–118

    Article  CAS  Google Scholar 

  26. Jefery GA, Macnicol DD, Bishop R (1996) Solid-state supramolecular chemistry: crystal engineering. In: Comprehensive Supramolecular Chemistry vol 6. Elsevier, Dordrecht, the Netherlands

  27. Ripmeester JA, Tse JS, Ratclife C, Powell BM (1987) A new clathrate hydrate structure. Nature 325:135–136

    Article  CAS  Google Scholar 

  28. Udachin KA, Ratclife CI, Enright GD, Ripmeester JA (1997) Structure H hydrate: a single crystal diffraction study of 2,2-dimethylpentane center dot 5(Xe, H2S) center dot 34 H2. Supramol Chem 8:173–176

    Article  CAS  Google Scholar 

  29. Atwood J, Davies JED, Macnicol DD (1991) Inclusion compounds. Oxford University Press, Oxford

    Google Scholar 

  30. Sloan ED (2003) Fundamental principles and applications of natural gas hydrates. Nature 426:353–363

    Article  CAS  Google Scholar 

  31. Liam CJ, Waldemar H, Valeria M (2010) Nucleation pathways of clathrate hydrates: effect of guest size and solubility. J Phys Chem B 114:13796–13807

    Article  Google Scholar 

  32. Grigory SS, Vladimir VS (2012) Melting and superheating of sI methane hydrate: molecular dynamics study. J Chem Phys 136:044523–044527

    Article  Google Scholar 

  33. Chialvo AA, Mohammed H, Cummings PT (2002) Molecular dynamics study of the structure and thermo physical properties of model sI clathrate hydrates. J Phys Chem B 106:442–451

    Article  CAS  Google Scholar 

  34. Plimpton SJ (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117:1–19

    Article  CAS  Google Scholar 

  35. Teleman O, Jonsson B, Engstrom S (1987) A molecular dynamics simulation of a water model with intramolecular degrees of freedom. Mol Phys 60:193–203

    Article  CAS  Google Scholar 

  36. Mizan TI, Savage PE, Ziff RM (1994) Molecular dynamics of supercritical water using a flexible SPC model. J Phys Chem 98:13067–13076

    Article  CAS  Google Scholar 

  37. Klauda JB, Sandler SI (2003) Phase behavior of clathrate hydrates: a model for single and multiple gas component hydrates. Chem Eng Sci 58:27–41

    Article  CAS  Google Scholar 

  38. Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley, New York

    Google Scholar 

  39. Allen MP, Tildesley DJ (1996) Computer simulation of liquids. Oxford University Press, Oxford

    Google Scholar 

  40. Liam CJ, Waldemar H, Valeria M (2009) Thermodynamic stability and growth of guest-free clathrate hydrates: a low-density crystal phase of water. J Phys Chem B 113:10298–10307

    Article  Google Scholar 

  41. Valeria M, Moore EB (2009) Water modelled as an intermediate element between carbon and silicon. J Phys Chem B 113:4008–4016

    Article  Google Scholar 

  42. Humphrey W, Dalke A, Schulten K (1996) VMD - visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  43. Pratt LR (2002) Molecular theory of hydrophobic effects: “She is too mean to have her name repeated”. Annu Rev Phys Chem 53:409–436

    Article  CAS  Google Scholar 

  44. Sabo D, Rempe SB, Greathouse JA, Martin MG (2006) Molecular studies of the structural properties of hydrogen gas in bulk water. Mol Simul 32(3–4):269–278

    Article  CAS  Google Scholar 

  45. Stillinger FH (1980) Water revisited. Science 209:451–457

    Article  CAS  Google Scholar 

  46. Willow SY, Xantheas SS (2012) Chem Phys Lett 525–526:13–18

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Professors Sundaram Balasubramanian, Thomas Heine, Sanjoy Bandhyopadhyay, Valeria Molinero, and Grigory S. Smirnov for their help in various ways. One of us (PKC) would like to thank Professors Alejandro Toro-Labbe and Jane S. Murray for kindly inviting him to contribute in this special issue of Journal of Molecular Modeling honoring Professor Peter Politzer, Indo-EU HYPOMAP project for financial assistance and DST, New Delhi for the Sir J. C. Bose National Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Ghosh or P. K. Chattaraj.

Additional information

Dedicated to Professor Peter Politzer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mondal, S., Ghosh, S. & Chattaraj, P.K. A molecular dynamics study on sI hydrogen hydrate. J Mol Model 19, 2785–2790 (2013). https://doi.org/10.1007/s00894-012-1625-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1625-7

Keywords

Navigation