Skip to main content
Log in

Probing possible egress channels for multiple ligands in human CYP3A4: A molecular modeling study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Human cytochrome P450 (CYP) 3A4 extensively contributes to metabolize 50% of the marketed drugs. Recently, a CYP3A4 structure with two molecules of ketoconazole (2KT) was identified. However, channels for egresses of these inhibitors are unexplored. Thus, we applied molecular dynamics simulations followed by channel analyses. Two simulations of empty and 2KT-bound CYP3A4 results revealed the multiple ligand-induced conformational changes in channel forming regions, which appear to be important for the regulation of channels. In addition, we observed that the channel-3 entrance is closed due to the large structural deviation of the key residues from Phe-cluster. F215 and F220 are known as entrance blockers of channel-2 in metyrapone-bound CYP3A4. Currently, F220 blocks the channel-3 along with F213 and F241. Therefore, it suggested that channel-1 and 2 could potentially serve as egress routes for 2KT. It is also supported by the results from MOLAxis analyses, in which the frequency of channel occurrence and bottleneck radius during simulation favor channel-1 and 2. Several bottleneck residues of these channels may have critical roles in 2KT egresses, especially S119. Our modeling study for multiple ligand-channeling of CYP3A4 could be very helpful to gain new insights into channel selectivity of CYP3A4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Guengerich FP (1994) Toxicol Lett 70:133–138

    Article  CAS  Google Scholar 

  2. Guengerich FP (2008) Chem Res Toxicol 21:70–83

    Article  CAS  Google Scholar 

  3. Lamb DC, Waterman MR, Kelly SL, Guengerich FP (2007) Curr Opin Biotechnol 18:504–512

    Article  CAS  Google Scholar 

  4. Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE (2004) Drug Metab Dispos 32:1201–1208

    Article  CAS  Google Scholar 

  5. Williams PA, Cosme J, Vinkovic DM, Ward A, Angove HC, Day PJ, Vonrhein C, Tickle IJ, Jhoti H (2004) Science 305:683–686

    Article  CAS  Google Scholar 

  6. Yano JK, Wester MR, Schoch GA, Griffin KJ, Stout CD, Johnson EF (2004) J Biol Chem 279:38091–38094

    Article  CAS  Google Scholar 

  7. Ekroos M, Sjogren T (2006) Proc Natl Acad Sci USA 103:13682–13687

    Article  CAS  Google Scholar 

  8. Wade RC, Winn PJ, Schlichting I, Sudarko (2004) J Inorg Biochem 98:1175–1182

    Article  CAS  Google Scholar 

  9. Cojocaru V, Winn PJ, Wade RC (2007) Biochim Biophys Acta 1770:390–401

    CAS  Google Scholar 

  10. Ludemann SK, Lounnas V, Wade RC (2000) J Mol Biol 303:797–811

    Article  CAS  Google Scholar 

  11. Winn PJ, Ludemann SK, Gauges R, Lounnas V, Wade RC (2002) Proc Natl Acad Sci USA 99:5361–5366

    Article  CAS  Google Scholar 

  12. Schleinkofer K, Sudarko WPJ, Ludemann SK, Wade RC (2005) EMBO Rep 6:584–589

    Article  CAS  Google Scholar 

  13. Yaffe E, Fishelovitch D, Wolfson HJ, Halperin D, Nussinov R (2008) Proteins 73:72–86

    Article  CAS  Google Scholar 

  14. Discovery Studio 2.0 User Guide (2005) Accelrys Inc, San Diego, CA, USA

  15. Spoel DV, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) J Comp Chem 26:1701–1718

    Article  Google Scholar 

  16. Schuettelkopf AW, van Aalten DMF (2004) Acta Crystallogr D 60:1355–1363

    Article  Google Scholar 

  17. Van Gunsteren WF, Billeter SR, Eising AA, Hunenberger PH, Kuger P, Mark AE, Scott WRP, Tironi IG (1996) The GROMOS96 manual and user guide. Biomos, Zurich

    Google Scholar 

  18. Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. Reidel, Dordrecht, pp 331–342

    Google Scholar 

  19. Hess B, Bekker H, Fraaije J, Berendsen HJC (1997) J Comp Chem 18:1463–1472

    Article  CAS  Google Scholar 

  20. Miyamoto S, Kollman PA (1992) J Comp Chem 13:952–962

    Article  CAS  Google Scholar 

  21. Scott EE, White MA, He YA, Johnson EF, Stout CD, Halpert JR (2004) J Biol Chem 279:27294–27301

    Article  CAS  Google Scholar 

  22. Wester MR, Johnson EF, Marques-Soares C, Dansette PM, Mansuy D, Stout CD (2003) Biochemistry 42:6370–6379

    Article  CAS  Google Scholar 

  23. Williams PA, Cosme J, Ward A, Angove HC, Matak Vinkovic D, Jhoti H (2003) Nature 424:464–468

    Article  CAS  Google Scholar 

  24. Otyepka M, Skopalík J, Anzenbacherová E, Anzenbacher P (2007) Biochim Biophys Acta 1770:376–389

    CAS  Google Scholar 

  25. Poulos TL (2003) Proc Natl Acad Sci USA 23:13121–13122

    Article  Google Scholar 

  26. Roussel F, Khan KK, Halpert JR (2000) Arch Biochem Biophys 374:269–278

    Article  CAS  Google Scholar 

  27. Park H, Lee S, Suh J (2005) J Am Chem Soc 127:13634–13642

    Article  CAS  Google Scholar 

  28. Li W, Liu H, Luo X, Zhu W, Tang Y, Halpert JR, Jiang H (2007) Drug Metab Dispos 35:689–696

    Article  CAS  Google Scholar 

  29. Scott EE, He YQ, Halpert JR (2002) Chem Res Toxicol 15:1407–1413

    Article  CAS  Google Scholar 

  30. Li W, Liu H, Scott EE, Grater F, Halpert JR, Luo X, Shen J, Jiang H (2005) Drug Metab Dispos 33:910–919

    Article  CAS  Google Scholar 

  31. Podust LM, Poulos TL, Waterman MR (2001) Proc Natl Acad Sci USA 98:3068–3073

    Article  CAS  Google Scholar 

  32. Raag R, Li H, Jones BC, Poulos TL (1993) Biochemistry 32:4571–4578

    Article  CAS  Google Scholar 

  33. Li H, Poulos TL (1997) Nat Struct Biol 4:140–146

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their great gratitude to the reviewers for their valuable suggestions. N. Krishnamoorthy, P. Gajendrarao, S. Thangapandian and Y. Lee were supported by scholarship from the BrainKorea21 program, Ministry of Education, Science and Technology, Korea and this work was supported by grants from MOST/KOSEF for Environmental Biotechnology National Core Research Center (grant #:R15–2003–012–02001–0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keun Woo Lee.

Additional information

Navaneethakrishnan Krishnamoorthy and Poornima Gajendrarao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnamoorthy, N., Gajendrarao, P., Thangapandian, S. et al. Probing possible egress channels for multiple ligands in human CYP3A4: A molecular modeling study. J Mol Model 16, 607–614 (2010). https://doi.org/10.1007/s00894-009-0571-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0571-5

Keywords

Navigation