Skip to main content
Log in

MooNMD – a program package based on mapped finite element methods

  • Regular article
  • Published:
Computing and Visualization in Science

Abstract

The basis of mapped finite element methods are reference elements where the components of a local finite element are defined. The local finite element on an arbitrary mesh cell will be given by a map from the reference mesh cell. This paper describes some concepts of the implementation of mapped finite element methods. From the definition of mapped finite elements, only local degrees of freedom are available. These local degrees of freedom have to be assigned to the global degrees of freedom which define the finite element space. We will present an algorithm which computes this assignment. The second part of the paper shows examples of algorithms which are implemented with the help of mapped finite elements. In particular, we explain how the evaluation of integrals and the transfer between arbitrary finite element spaces can be implemented easily and computed efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bastian, P., Birken, K., Johannsen, K., Lang, S., Neuss, N., Rentz-Reichert, H., Wieners, C.: UG – a flexible software toolbox for solving partial differential equations. Comput. Visual. Sci. 1, 27–40 (1997)

    Article  Google Scholar 

  2. Behns, V.: Mortar–Techniken zur Behandlung von Grenzschichtproblemen. PhD thesis, Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, 2001

  3. Boffi, D., Gastaldi, L.: On the quadrilateral Q2–P1 element for the Stokes problem. Int. J. Num. Meth. Fluids, 39(11), 1001–1011 (2002)

    Article  Google Scholar 

  4. Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods. Vol. 15. Texts in Applied Mathematics. New York: Springer–Verlag 1994

  5. Ciarlet, P. G.: Basic error estimates for elliptic problems. In P.G. Ciarlet and J.L. Lions, (eds.) Handbook of Numerical Analysis II, pp. 19–351. Amsterdam, New York, Oxford, Tokyo: North–Holland 1991

  6. Dunca, A., John, V., Layton, W. J.: Approximating local averages of fluid velocities: the equilibrium Navier–Stokes equations. Appl. Numer. Math., to appear, 2003

  7. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes equations. Berlin-Heidelberg-New York: Springer-Verlag 1986

  8. Iliescu, T., John, V., Layton, W. J., Matthies, G., Tobiska, L.: A numerical study of a class of LES models. Int. J. Comput. Fluid Dyn. 17(1), 75–85 (2003)

    Article  MathSciNet  Google Scholar 

  9. John, V.: Reference values for drag and lift of a two-dimensional time dependent flow around a cylinder. submitted to Int. J. Num. Meth. Fluids

  10. John, V.: Higher order finite element methods and multigrid solvers in a benchmark problem for the 3D Navier–Stokes equations. Int. J. Num. Meth. Fluids 40, 775–798 (2002)

    Article  Google Scholar 

  11. John, V.: Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical Results for a Class of LES Models. Lecture Notes in Computational Science and Engineering 34. Berlin, Heidelberg, New York: Springer-Verlag 2003

  12. John, V.: Slip with friction and penetration with resistance boundary conditions for the Navier–Stokes equations – numerical tests and aspects of the implementation. J. Comp. Appl. Math. 147, 287–300 (2002)

    Article  Google Scholar 

  13. John, V.: The behaviour of the rational LES model in a two–dimensional mixing layer problem. Preprint 28, Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, 2002

  14. John, V., Knobloch, P., Matthies, G., Tobiska, L.: Non-nested multi-level solvers for finite element discretizations of mixed problems. Computing, 68, 313–341 (2002)

    Article  MathSciNet  Google Scholar 

  15. John, V., Layton, W.J.: Approximating local averages of fluid velocities: The Stokes problem. Computing, 66, 269–287 (2001)

    Article  MathSciNet  Google Scholar 

  16. John, V., Matthies, G.: Higher order finite element discretizations in a benchmark problem for incompressible flows. Int. J. Num. Meth. Fluids, 37, 885–903 (2001)

    Article  Google Scholar 

  17. Lavrova, O., Matthies, G., Mitkova, T., Polevikov, V., Tobiska, L.: Finite element methods for coupled problems in ferrohydrodynamics. In E. Bänsch (ed.) Challenges in Scientific Computing – CISC 2002, Lecture Notes in Computational Science and Engineering 35. Berlin, Heidelberg, New York: Springer-Verlag, 160–183, 2003

  18. Matthies, G.: Finite element methods for free boundary value problems with capillary surfaces. Shaker Verlag, Aachen, 2002. PhD thesis, Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg

  19. Matthies, G., Tobiska, L.: The inf-sup condition for the mapped Qk/Pk-1 disc element in arbitrary space dimensions. Computing, 69(2), 119–139 (2002)

    Article  MathSciNet  Google Scholar 

  20. Schieweck, F.: A general transfer operator for arbitrary finite element spaces. Preprint 25, Otto-von-Guericke-Universität Magdeburg, Fakultät für Mathematik, 2000

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker John.

Additional information

Communicated by

M.S. Espedal, A. Quarteroni, A. Sequeira

Rights and permissions

Reprints and permissions

About this article

Cite this article

John, V., Matthies, G. MooNMD – a program package based on mapped finite element methods. Comput Visual Sci 6, 163–170 (2004). https://doi.org/10.1007/s00791-003-0120-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-003-0120-1

Keywords

Navigation