Skip to main content

Advertisement

Log in

VTST/MT studies of the catalytic mechanism of C–H activation by transition metal complexes with [Cu2(μ-O2)], [Fe2(μ-O2)] and Fe(IV)–O cores based on DFT potential energy surfaces

  • Minireview
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

High-valent Cu and Fe species, which are generated from dioxygen activation in metalloenzymes, carry out the functionalization of strong C–H bonds. Understanding the atomic details of the catalytic mechanism has long been one of the main objectives of bioinorganic chemistry. Large H/D kinetic isotope effects (KIEs) were observed in the C–H activation by high-valent non-heme Cu or Fe complexes in enzymes and their synthetic models. The H/D KIE depends significantly on the transition state properties, such as structure, energies, frequencies, and shape of the potential energy surface, when the tunneling effect is large. Therefore, theoretical predictions of kinetic parameters such as rate constants and KIEs can provide a reliable link between atomic-level quantum mechanical mechanisms and experiments. The accurate prediction of the tunneling effect is essential to reproduce the kinetic parameters. The rate constants and HD/KIE have been calculated using the variational transition-state theory including multidimensional tunneling based on DFT potential energy surfaces along the reaction coordinate. Excellent agreement was observed between the predicted and experimental results, which assures the validity of the DFT potential energy surfaces and, therefore, the proposed atomic-level mechanisms. The [Cu2(μ-O)2], [Fe2(μ-O)2], and Fe(IV)–oxo species were employed for C–H activation, and their role as catalysts was discussed at an atomic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Scheme 1
Fig. 18

Similar content being viewed by others

References

  1. Sono M, Roach MP, Coulter ED, Dawson JH (1996) Chem Rev 96:2841–2888

    Article  CAS  PubMed  Google Scholar 

  2. Meunier B, de Visser SP, Shaik S (2004) Chem Rev 104:3947–3980

    Article  CAS  PubMed  Google Scholar 

  3. Solomon EI, Brunold TC, Davis MI, Kemsley JN, Lee S-K, Lehnert N, Neese F, Skulan AJ, Yang Y-S, Zhou J (2000) Chem Rev 100:235–350

    Article  CAS  PubMed  Google Scholar 

  4. Costas M, Mehn MP, Jensen MP, Que L (2004) Chem Rev 104:939–986

    Article  CAS  PubMed  Google Scholar 

  5. Solomon EI, Sundaram UM, Machonkin TE (1996) Chem Rev 96:2563–2606

    Article  CAS  PubMed  Google Scholar 

  6. Hatcher LQ, Karlin KD (2004) J Biol Inorg Chem 9:669–683

    Article  CAS  PubMed  Google Scholar 

  7. Bento I, Carrondo MA, Lindley PF (2006) J Biol Inorg Chem 11:539–547

    Article  CAS  PubMed  Google Scholar 

  8. Holm RH, Kennepohl P, Solomon EI (1996) Chem Rev 96:2239–2314

    Article  CAS  PubMed  Google Scholar 

  9. Nam W (2007) Acc Chem Res 40:522–531

    Article  CAS  PubMed  Google Scholar 

  10. Siegbahn PEM, Borowski T (2006) Acc Chem Res 39:729–738

    Article  CAS  PubMed  Google Scholar 

  11. Rittle J, Green MT (2010) Science 330:933–937

    Article  CAS  PubMed  Google Scholar 

  12. Que L, Ho RYN (1996) Chem Rev 96:2607–2624

    Article  CAS  PubMed  Google Scholar 

  13. Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Chem Rev 105:2253–2278

    Article  CAS  PubMed  Google Scholar 

  14. Vaillancourt FH, Yeh E, Vosburg DA, Garneau-Tsodikova S, Walsh CT (2006) Chem Rev 106:3364–3378

    Article  CAS  PubMed  Google Scholar 

  15. Bollinger JM Jr, Price JC, Hoffart LM, Barr EW, Krebs C (2005) Eur J Inorg Chem 2005:4245–4254

    Article  CAS  Google Scholar 

  16. Ryle MJ, Hausinger RP (2002) Curr Opin Chem Biol 6:193–201

    Article  CAS  PubMed  Google Scholar 

  17. Baik M-H, Newcomb M, Friesner RA, Lippard SJ (2003) Chem Rev 103:2385–2420

    Article  CAS  PubMed  Google Scholar 

  18. Tinberg CE, Lippard SJ (2011) Acc Chem Res 44:280–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Price JC, Barr EW, Tirupati B, Bollinger JM Jr, Krebs C (2003) Biochemistry 42:7497–7508

    Article  CAS  PubMed  Google Scholar 

  20. Valentine AM, Wilkinson B, Liu KE, Komar-Panicucci S, Priestley ND, Williams PG, Morimoto H, Floss HG, Lippard SJ (1997) J Am Chem Soc 119:1818–1827

    Article  CAS  Google Scholar 

  21. Cho K-B, Kim EJ, Seo MS, Shaik S, Nam W (2012) Chem Eur J 18:10444–10453

    Article  CAS  PubMed  Google Scholar 

  22. Nesheim JC, Lipscomb JD (1996) Biochemistry 35:10240–10247

    Article  CAS  PubMed  Google Scholar 

  23. Ambundo EA, Friesner RA, Lippard SJ (2002) J Am Chem Soc 124:8770–8771

    Article  CAS  PubMed  Google Scholar 

  24. Knapp MJ, Rickert K, Klinman JP (2002) J Am Chem Soc 124:3865–3874

    Article  CAS  PubMed  Google Scholar 

  25. Meyer MP, Tomchick DR, Klinman JP (2008) Proc Natl Acad Sci 105:1146–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Truhlar DG, Garrett BC (1980) Acc Chem Res 13:440–448

    Article  CAS  Google Scholar 

  27. Liu YP, Lynch GC, Truong TN, Lu DH, Truhlar DG, Garrett BC (1993) J Am Chem Soc 115:2408–2415

    Article  CAS  Google Scholar 

  28. Garrett BC, Truhlar DG (2005) In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: The first forty years. Elsevier, Amsterdam, pp 67–87

    Chapter  Google Scholar 

  29. Fernandez-Ramos A, Ellingson BA, Garrett BC, Truhlar DG (2007) In: Lipkowitz KB, Cundari TR (eds) Rev comput chem. Wiley, Hoboken, pp 125–232

    Chapter  Google Scholar 

  30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C01. Gaussian, Inc., Wallingford

  31. Zhao Y, Truhlar D (2008) Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  32. Valero R, Costa R, Moreira IdPR, Truhlar DG, Illas F (2008) J Chem Phys 128:114103–114108

    Article  PubMed  CAS  Google Scholar 

  33. Wigner E (1932) Z Phys Chem Abt B: 19:203–216

    Google Scholar 

  34. Bell RP (1959) Trans Faraday Soc 55:1–4

    Article  CAS  Google Scholar 

  35. Skodje RT, Truhlar DG (1981) J Phys Chem 85:624–628

    Article  CAS  Google Scholar 

  36. Eckart C (1930) Phys Rev 35:1303–1309

    Article  CAS  Google Scholar 

  37. Truong TN, Truhlar DG (1990) J Chem Phys 93:1761–1769

    Article  CAS  Google Scholar 

  38. Truong TN, Duncan WT, Tirtowidjojo M (1999) Phys Chem Chem Phys 1:1061–1065

    Article  CAS  Google Scholar 

  39. Kim Y, Kreevoy MM (1992) J Am Chem Soc 114:7116–7123

    Article  CAS  Google Scholar 

  40. Pu J, Gao J, Truhlar DG (2006) Chem Rev 106:3140–3169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Truhlar DG (2010) J Phys Org Chem 23:660–676

    Article  CAS  Google Scholar 

  42. Zheng J, Zhang S, Corchado JC, Chuang YY, Coitiño EL, Ellingson BA, Truhlar DG (2010) Gaussrate 2009-A. University of Minnesota, Minneapolis

  43. Zheng J, Zhang S, Lynch BJ, Corchado JC, Chuang YY, Fast PL, Hu WP, Liu YP, Lynch GC, Nguyen KA, Jackels CF, Ramos AF, Ellingson BA, Melissas VS, Villà J, Rossi I, Coitiño EL, Pu J, Albu TV, Steckler R, Garrett BC, Isaacson AD, Truhlar DG (2010) Polyrate 2010-A. University of Minnesota, Minneapolis, MN

  44. Corchado JC, Coitiño EL, Chuang Y-Y, Fast PL, Truhlar DG (1998) J Phys Chem A 102:2424–2438

    Article  CAS  Google Scholar 

  45. Limbach H-H, Pietrzak M, Benedict H, Tolstoy PM, Golubev NS, Denisov GS (2004) J Mol Struct 706:115–119

    Article  CAS  Google Scholar 

  46. Limbach HH, Miguel Lopez J, Kohen A (2006) Phil Trans R Soc B 361:1399–1415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Limbach H-H (2007) In: Hynes JT, Klinman JP, Limbach H-H, Schowen RL (eds) Hydrogen-transfer reactions. Wiley-VCH, Weinheim, pp 135–221

    Google Scholar 

  48. Garrett BC, Truhlar DG (1979) J Am Chem Soc 101:4534–4548

    Article  CAS  Google Scholar 

  49. Johnston HS (1966) Gas phase reaction rate theory. Ronald press, New York, pp 1–362

  50. Mahapatra S, Halfen JA, Tolman WB (1996) J Am Chem Soc 118:11575–11586

    Article  CAS  Google Scholar 

  51. Cramer CJ, Pak Y (2001) Theor Chem Acc 105:477–480

    Article  CAS  Google Scholar 

  52. Cramer CJ, Kinsinger CR, Pak Y (2003) J Mol Struc Theochem 632:111–120

    Article  CAS  Google Scholar 

  53. Park K, Pak Y, Kim Y (2012) J Am Chem Soc 134:3524–3531

    Article  CAS  PubMed  Google Scholar 

  54. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  55. Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101–194118

    Article  PubMed  CAS  Google Scholar 

  56. Adamo C, Barone V (1999) J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  57. Lynch BJ, Fast PL, Harris M, Truhlar DG (2000) J Phys Chem A 104:4811–4815

    Article  CAS  Google Scholar 

  58. Kim Y, Truhlar DG, Kreevoy MM (1991) J Am Chem Soc 113:7837–7847

    Article  CAS  Google Scholar 

  59. Shida N, Barbara PF, Almlöf J (1991) J Chem Phys 94:3633–3643

    Article  CAS  Google Scholar 

  60. Kim Y (1996) J Am Chem Soc 118:1522–1528

    Article  CAS  Google Scholar 

  61. Truhlar DG, Isaacson AD, Garrett BC (1985) In: Baer M (ed) Theory of chemical reaction dynamics. CRC Press, Boca Raton, pp 65–137

    Google Scholar 

  62. Hirshfeld FL (1977) Theor Chem Acc 44:129–138

    Article  CAS  Google Scholar 

  63. Mayer I (1986) Int J Quantum Chem 29:477–488

    Article  CAS  Google Scholar 

  64. Jansen M, Wedig U (2008) Angew Chem Int Ed 47:10026–10029

    Article  CAS  Google Scholar 

  65. Ramos-Cordoba E, Postils V, Salvador P (2015) J Chem Theory Comput 11:1501–1508

    Article  CAS  PubMed  Google Scholar 

  66. Sit PHL, Car R, Cohen MH, Selloni A (2011) Inorg Chem 50:10259–10267

    Article  CAS  PubMed  Google Scholar 

  67. Hanson RS, Hanson TE (1996) Microbiol Rev 60:439–471

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Gassner GT, Lippard SJ (1999) Biochemistry 38:12768–12785

    Article  CAS  PubMed  Google Scholar 

  69. Liu KE, Valentine AM, Wang D, Huynh BH, Edmondson DE, Salifoglou A, Lippard SJ (1995) J Am Chem Soc 117:10174–10185

    Article  CAS  Google Scholar 

  70. Brazeau BJ, Lipscomb JD (2000) Biochemistry 39:13503–13515

    Article  CAS  PubMed  Google Scholar 

  71. Lee SK, Nesheim JC, Lipscomb JD (1993) J Biol Chem 268:21569–21577

    CAS  PubMed  Google Scholar 

  72. Shu L, Nesheim JC, Kauffmann K, Münck E, Lipscomb JD, Que L (1997) Science 275:515–518

    Article  CAS  PubMed  Google Scholar 

  73. Yoshizawa K (2002) Coord Chem Rev 226:251–259

    Article  CAS  Google Scholar 

  74. Yoshizawa K (2006) Acc Chem Res 39:375–382

    Article  CAS  PubMed  Google Scholar 

  75. Gherman BF, Lippard SJ, Friesner RA (2005) J Am Chem Soc 127:1025–1037

    Article  CAS  PubMed  Google Scholar 

  76. Basch H, Mogi K, Musaev DG, Morokuma K (1999) J Am Chem Soc 121:7249–7256

    Article  CAS  Google Scholar 

  77. Basch H, Musaev DG, Mogi K, Morokuma K (2001) J Phys Chem A 105:3615–3622

    Article  CAS  Google Scholar 

  78. Musaev DG, Basch H, Morokuma K (2002) J Am Chem Soc 124:4135–4148

    Article  CAS  PubMed  Google Scholar 

  79. Baik M-H, Gherman BF, Friesner RA, Lippard SJ (2002) J Am Chem Soc 124:14608–14615

    Article  CAS  PubMed  Google Scholar 

  80. Valentine AM, Stahl SS, Lippard SJ (1999) J Am Chem Soc 121:3876–3887

    Article  CAS  Google Scholar 

  81. Tinberg CE, Lippard SJ (2010) Biochemistry 49:7902–7912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Marenich AV, Jerome SV, Cramer CJ, Truhlar DG (2012) J Chem Theory Comput 8:527–541

    Article  CAS  PubMed  Google Scholar 

  83. Mai BK, Kim Y (2013) Chem Eur J 19:3568–3572

    Article  CAS  Google Scholar 

  84. Mai BK, Kim Y (2014) Chem Eur J 20:6532–6541

    Article  CAS  PubMed  Google Scholar 

  85. Ye S, Neese F (2009) Curr Opin Chem Biol 13:89–98

    Article  CAS  PubMed  Google Scholar 

  86. Bassan A, Borowski T, Siegbahn PEM (2004) Dalton Trans 2004:3153–3162

    Article  Google Scholar 

  87. Krebs C, Price JC, Baldwin J, Saleh L, Green MT, Bollinger JM Jr (2005) Inorg Chem 44:742–757

    Article  CAS  PubMed  Google Scholar 

  88. Sinnecker S, Svensen N, Barr EW, Ye S, Bollinger JM Jr, Neese F, Krebs C (2007) J Am Chem Soc 129:6168–6179

    Article  CAS  PubMed  Google Scholar 

  89. Price JC, Barr EW, Glass TE, Krebs C, Bollinger JM Jr (2003) J Am Chem Soc 125:13008–13009

    Article  CAS  PubMed  Google Scholar 

  90. Bollinger JM Jr, Krebs C (2006) J Inorg Biochem 100:586–605

    Article  CAS  PubMed  Google Scholar 

  91. Kaizer J, Klinker EJ, Oh NY, Rohde J-U, Song WJ, Stubna A, Kim J, Münck E, Nam W, Que L (2004) J Am Chem Soc 126:472–473

    Article  CAS  PubMed  Google Scholar 

  92. Kwon YH, Mai BK, Lee Y-M, Dhuri SN, Mandal D, Cho K-B, Kim Y, Shaik S, Nam W (2015) J Phys Chem Lett 6:1472–1476

    Article  CAS  PubMed  Google Scholar 

  93. Decker A, Rohde J-U, Klinker EJ, Wong SD, Que L, Solomon EI (2007) J Am Chem Soc 129:15983–15996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Neese F (2006) J Inorg Biochem 100:716–726

    Article  CAS  PubMed  Google Scholar 

  95. Mandal D, Ramanan R, Usharani D, Janardanan D, Wang B, Shaik S (2015) J Am Chem Soc 137:722–733

    Article  CAS  PubMed  Google Scholar 

  96. Mandal D, Shaik S (2016) J Am Chem Soc 138:2094–2097

    Article  CAS  PubMed  Google Scholar 

  97. Filatov M, Shaik S (1998) J Phys Chem A 102:3835–3846

    Article  CAS  Google Scholar 

  98. Danovich D, Shaik S (1997) J Am Chem Soc 119:1773–1786

    Article  CAS  Google Scholar 

  99. Schröder D, Shaik S, Schwarz H (2000) Acc Chem Res 33:139–145

    Article  PubMed  CAS  Google Scholar 

  100. Ye S, Neese F (2011) Proc Natl Acad Sci 108:1228–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Saouma CT, Mayer JM (2014) Chem Sci 5:21–31

    Article  CAS  Google Scholar 

  102. Dietl N, Schlangen M, Schwarz H (2012) Angew Chem Int Ed 51:5544–5555

    Article  CAS  Google Scholar 

  103. de Visser SP (2006) J Am Chem Soc 128:9813–9824

    Article  PubMed  CAS  Google Scholar 

  104. Mai BK, Kim Y (2016) Inorg Chem 55:3844–3852

    Article  CAS  PubMed  Google Scholar 

  105. de Visser SP (2006) Angew Chem Int Ed 45:1790–1793

    Article  CAS  Google Scholar 

  106. Usharani D, Janardanan D, Shaik S (2011) J Am Chem Soc 133:176–179

    Article  CAS  PubMed  Google Scholar 

  107. Srnec M, Wong SD, Solomon EI (2014) Dalton Trans 43:17567–17577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Srnec M, Wong SD, Matthews ML, Krebs C, Bollinger JM, Solomon EI (2016) J Am Chem Soc 138:5110–5122

    Article  CAS  PubMed  Google Scholar 

  109. Shaik S, Chen H, Janardanan D (2011) Nat Chem 3:19–27

    Article  CAS  PubMed  Google Scholar 

  110. Hirao H, Kumar D, Thiel W, Shaik S (2005) J Am Chem Soc 127:13007–13018

    Article  CAS  PubMed  Google Scholar 

  111. Shaik S, Hirao H, Kumar D (2007) Acc Chem Res 40:532–542

    Article  CAS  PubMed  Google Scholar 

  112. Sastri CV, Lee J, Oh K, Lee YJ, Lee J, Jackson TA, Ray K, Hirao H, Shin W, Halfen JA, Kim J, Que L, Shaik S, Nam W (2007) Proc Natl Acad Sci 104:19181–19186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hirao H, Que L, Nam W, Shaik S (2008) Chem Eur J 14:1740–1756

    Article  CAS  PubMed  Google Scholar 

  114. Reed AE, Weinstock RB, Weinhold F (1985) J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Korea Research Foundation (Grant No. NRF-2015R1D1A1A09061386).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongho Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 269 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Mai, B.K. & Park, S. VTST/MT studies of the catalytic mechanism of C–H activation by transition metal complexes with [Cu2(μ-O2)], [Fe2(μ-O2)] and Fe(IV)–O cores based on DFT potential energy surfaces. J Biol Inorg Chem 22, 321–338 (2017). https://doi.org/10.1007/s00775-017-1441-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-017-1441-8

Keywords

Navigation