Skip to main content
Log in

A personal perspective on the discovery of dioxygen adducts of copper and iron by Nobumasa Kitajima

  • Commentary
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Abstract

Transition metal–dioxygen complexes have fascinated bioinorganic and inorganic chemists for over half a century. The late Nobumasa Kitajima was one of the very successful researchers in this field. Despite his short career (40 years old), he made many important contributions. This Commentary highlights his important accomplishments and how they have impacted subsequent work in this area.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Scheme 5
Fig. 2
Scheme 6
Scheme 7
Fig. 3
Scheme 8
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 9
Fig. 8
Scheme 10
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

bppa:

Bis(6-pivalamide-2-pyridylmethyl)(2-pyridylmethyl)amine

3,5-iPr2pzH:

3,5-Diisopropyl-1-pyrazole

N-Et-HPTB:

N, N, N’, N’-tetrakis(1-ethylbenzimidazolyl-2-methyl)-1,3-diamino-2-propanol

L0 :

Hydrotris(3,5-dimethyl-1-pyrazolyl)borate anion

L1 :

Hydrotris(3,5-diisopropyl-1-pyrazolyl)borate)borate anion

L3 :

Hydrotris(3-tertialy butyl-5-isoporpyl-1-pyrazolyl)borate anion

L5 :

Hydrotris(3,5-diphenyl-1-pyrazolyl)borate anion

L10 :

Hydrotris(3-adamantyl-5-isoporpyl-1-pyrazolyl)borate anion

mCPBA:

m-chloroperbenzoic acid

oxyhemocyanin:

Oxygenated hemocyanin

PhIO:

Iodosylbenzene

Ph-bimp:

2.6-Bis[bis{2-(1-methyl-4,5-diphenylimidazolyl)methyl}aminomethyl]-4-methylphenolate

TMG3tren:

1,1,1-Tris{2-[N 2-(1,1,3,3-tetramethylguanidino)]ethyl}amine

Tp:

Hydrotris(pyrazolyl)borate

TPA:

Tris{(2-pyridyl)methyl}amine

XYL–O–:

α,α’-Bis{N, N-bis(2-pyridylethyl)amino}-m-xylene-2-olate

References

  1. Hayaishi O, Coon MJ, Estabrook RW, Que L, Jr, Yamamoto S (eds) (2005) Special issue: Celebrating 50 years of oxygenases. Biochem Biophys Res Communs 338: 1–686

  2. Mason HS, Fowlks WL, Peterson E (1955) J Am Chem Soc 77:2914–2915

    Article  CAS  Google Scholar 

  3. Hayaishi O, Katagiri M, Rothberg S (1955) J Am Chem Soc 77:5450–5451

    Article  CAS  Google Scholar 

  4. Trofimenko S (1999) Scorpionates—the coordination chemistry of polypyrazolyborate ligands. Imperial College Press, London

    Book  Google Scholar 

  5. Pettinari C (2008) Scorpionates II: chelating borate ligands. Imperial College Press, London

    Book  Google Scholar 

  6. Trofimenko S (1966) J Am Chem Soc 88:1842–1844

    Article  CAS  Google Scholar 

  7. Yap GPA, Fujisawa K (eds) (2016) Special issue: Scorpionates: a golden anniversary celebrating the 50th anniversary of Swiatoslaw ‘Jerry’ Trofimenko’s seminal paper on scorpionates. Acta Crystallogr Sect C Struct Chem C72: 766–856

  8. Calabrese JC, Trofimenko S, Thmpson JS (1986) J Chem Soc Chem Commun 1122–1123.

  9. Trofimenko S, Calabrese JC, Thmpson JS (1987) Inorg Chem 26:1507–1514

    Article  CAS  Google Scholar 

  10. Kitajima N, Fujisawa K, Fujimoto C, Moro-oka Y (1989) Chem Lett 18:421–424

    Article  Google Scholar 

  11. Magnus KA, Ton-That H, Carpenter JE (1994) Chem Rev 94:727–735

    Article  CAS  Google Scholar 

  12. Holm RH, Kennepohl P, Solomon EI (1996) Chem Rev 96:2239–2314

    Article  CAS  PubMed  Google Scholar 

  13. Decker H, Tuczek F (2000) Trends Biochem Sci 25:392–397

    Article  CAS  PubMed  Google Scholar 

  14. Gerdemann C, Eicken C, Krebs B (2002) Acc Chem Res 35:183–191

    Article  CAS  PubMed  Google Scholar 

  15. Jaenicke E, Decker H (2004) ChemBioChem 5:163–169

    Article  CAS  PubMed  Google Scholar 

  16. Bento I, Carrondo MA, Lindley PF (2006) J Biol Inorg Chem 11:539–547

    Article  CAS  PubMed  Google Scholar 

  17. Markl J (2013) Biochim Biophys Acta Proteins Proteom 1834:1840–1852

    Article  CAS  Google Scholar 

  18. Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L (2014) Chem Rev 114:3659–3853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gaykema WPJ, Hol WGJ, Vereijken JM, Soeter NM, Bak HJ, Beintema JJ (1984) Nature 309:23–29

    Article  CAS  Google Scholar 

  20. Gaykema WPJ, Volbeda A, Hol WGJ (1986) J Mol Biol 187:255–275

    Article  CAS  PubMed  Google Scholar 

  21. Thompson JS (1984) J Am Chem Soc 106:4057–4059

    Article  CAS  Google Scholar 

  22. Karlin KD, Cruse RW, Gultneh Y, Hayes JC, Zubieta J (1984) J Am Chem Soc 106:3372–3374

    Article  CAS  Google Scholar 

  23. Pate JE, Cruse RW, Karlin KD, Solomon EI (1987) J Am Chem Soc 109:2624–2630

    Article  CAS  Google Scholar 

  24. Kitajima N, Koda T, Moro-oka Y (1988) Chem Lett 17:347–350

    Article  Google Scholar 

  25. Kitajima N, Koda T, Hashimoto S, Kitagawa T, Moro-oka Y (1988) J Chem Soc Chem Commun 151–152

  26. Kitajima N, Koda T, Iwata Y, Moro-oka Y (1990) J Am Chem Soc 112:8833–8839

    Article  CAS  Google Scholar 

  27. Kitajima N, Koda T, Hashimoto S, Kitagawa T, Moro-oka Y (1991) J Am Chem Soc 113:5664–5671

    Article  CAS  Google Scholar 

  28. Kitajima N, Moro-oka Y (1994) Chem Rev 94:737–757

    Article  CAS  Google Scholar 

  29. Kitajima N, Fujisawa K, Moro-oka Y, Toriumi K (1989) J Am Chem Soc 111:8975–8976

    Article  CAS  Google Scholar 

  30. Kitajima K, Fujisawa K, Fujimoto C, Moro-oka Y, Hashimoto S, Kitagawa T, Toriumi K, Tatsumi K, Nakamura A (1992) J Am Chem Soc 114:1277–1291

    Article  CAS  Google Scholar 

  31. Baldwin MJ, Root DE, Pate JE, Fujisawa K, Kitajima N, Solomon EI (1992) J Am Chem Soc 114:10421–10431

    Article  CAS  Google Scholar 

  32. Jacobson RR, Tyeklár Z, Farooq A, Karlin KD, Liu S, Zubieta J (1988) J Am Chem Soc 110:3690–3692

    Article  CAS  Google Scholar 

  33. Baldwin MJ, Ross PK, Pate JE, Tyeklár Z, Karlin KD, Solomon EI (1991) J Am Chem Soc 113:8671–8679

    Article  CAS  Google Scholar 

  34. Tyeklár Z, Jacobson RR, Wei N, Murthy NN, Zubieta J, Karlin KD (1993) J Am Chem Soc 115:2677–2869

    Article  Google Scholar 

  35. Kitajima N, Fujisawa K, Moro-oka Y (1990) Inorg Chem 29:357–358

    Article  CAS  Google Scholar 

  36. Kitajima N, Katayama T, Fujisawa K, Moro-oka Y (1993) J Am Chem Soc 115:7872–7873

    Article  CAS  Google Scholar 

  37. Chen P, Fujisawa K, Solomon EI (2000) J Am Chem Soc 122:10177–10193

    Article  CAS  Google Scholar 

  38. Kitajima N, Fujisawa K, Tanaka M, Moro-oka Y (1992) J Am Chem Soc 114:9232–9233

    Article  CAS  Google Scholar 

  39. Randall DW, George SD, Hedman B, Hodgson KO, Fujisawa K, Solomon EI (2000) J Am Chem Soc 122:11620–11631

    Article  CAS  Google Scholar 

  40. Basumallick L, George SD, Randall DW, Hedman B, Hodgson KO, Fujisawa K, Solomon EI (2002) Inorg Chim Acta 337:357–365

    Article  CAS  Google Scholar 

  41. Fujisawa K, Fujita K, Takahashi T, Kitajima N, Moro-oka Y, Matsunaga Y, Miyashita Y, Okamoto K (2004) Inorg Chem Commun 7:1188–1190

    Article  CAS  Google Scholar 

  42. Matsunaga Y, Fujisawa K, Ibi N, Miyashita Y, Okamoto K (2005) Inorg Chem 44:325–335

    Article  CAS  PubMed  Google Scholar 

  43. Gorelsky SI, Basumallick L, Vura-Weis J, Sarangi R, Hodgson KO, Hedman B, Fujisawa K, Solomon EI (2005) Inorg Chem 44:4947–4960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kitajima N, Fujisawa K, Koda T, Hikichi S, Moro-oka Y (1990) J Chem Soc Chem Commun 1357–1358

  45. Fujisawa K, Moro-oka Y, Kitajima N (1994) J Chem Soc Chem Commun 623–624

  46. Chen P, Fujisawa K, Helton ME, Karlin KD, Solomon EI (2003) J Am Chem Soc 125:6394–6408

    Article  CAS  PubMed  Google Scholar 

  47. Ross PK, Solomon EI (1990) J Am Chem Soc 112:5871–5872

    Article  CAS  Google Scholar 

  48. Fujisawa K, Tanaka M, Moro-oka Y, Kitajima N (1994) J Am Chem Soc 116:12079–12080

    Article  CAS  Google Scholar 

  49. Chen P, Root DE, Campochiaro C, Fujisawa K, Solomon EI (2003) J Am Chem Soc 125:466–474

    Article  PubMed  Google Scholar 

  50. Fujisawa K, Ono T, Ishikawa Y, Amir N, Miyashita Y, Okamoto K, Lehnert N (2006) Inorg Chem 45:1698–1713

    Article  CAS  PubMed  Google Scholar 

  51. Würtele C, Gaoutchenova E, Harms K, Holthausen MC, Sundermeyer J, Schindler S (2006) Angew Chem Int Ed 45:3867–3869

    Article  Google Scholar 

  52. Fujisawa K, Kobayashi T, Fujita K, Kitajima N, Moro-oka Y, Miyashita Y, Yamada Y, Okamoto K (2000) Bull Chem Soc Jpn 73:1797–1804

    Article  CAS  Google Scholar 

  53. Wada A, Harata M, Hasegawa K, Jitsukawa K, Masuda H, Mukai M, Kitagawa T, Einaga H (1998) Angew Chem Int Ed 37:798–799

    Article  CAS  Google Scholar 

  54. Kitajima N, Fukui H, Moro-oka Y (1990) J Am Chem Soc 112:6402–6403

    Article  CAS  Google Scholar 

  55. Kitajima N, Tamura N, Amagai H, Fukui H, Moro-oka Y, Mizutani Y, Kitagawa T, Mathur R, Heerwegh K, Reed CA, Randall CR, Que L Jr, Tatsumi K (1994) J Am Chem Soc 116:9071–9085

    Article  CAS  Google Scholar 

  56. Kim K, Lippard SJ (1996) J Am Chem Soc 118:4914–4915

    Article  CAS  Google Scholar 

  57. Ookubo T, Sugimoto H, Nagayama T, Masuda H, Sato T, Tanaka K, Maeda Y, Ōkawa H, Hayashi Y, Uehara A, Suzuki M (1996) J Am Chem Soc 118:701–702

    Article  CAS  Google Scholar 

  58. Dong Y, Yan S, Young VG Jr, Que L Jr (1996) Angew Chem Int Ed 35:618–620

    Article  CAS  Google Scholar 

  59. Brunold TC, Tamura N, Kitajima N, Moro-oka Y, Solomon EI (1998) J Am Chem Soc 120:5674–5690

    Article  CAS  Google Scholar 

  60. Kitajima N, Singh UP, Amagai H, Osawa M, Moro-oka Y (1991) J Am Chem Soc 113:7757–7758

    Article  CAS  Google Scholar 

  61. Kitajima N, Osawa M, Tanaka M, Moro-oka Y (1991) J Am Chem Soc 113:8952–8953

    Article  CAS  Google Scholar 

  62. Kitajima N, Komatsuzaki H, Hikichi S, Moro-oka Y (1994) J Am Chem Soc 116:11596–11597

    Article  CAS  Google Scholar 

  63. Lehnert N, Fujisawa K, Solomon EI (2003) Inorg Chem 42:469–481

    Article  CAS  PubMed  Google Scholar 

  64. Sarangi R, Aboelella N, Fujisawa K, Tolman WB, Hedman B, Hodgson KO, Solomon EI (2006) J Am Chem Soc 128:8286–8296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sarangi R, York JT, Helton ME, Fujisawa K, Karlin KD, Tolman WB, Hodgson KO, Hedman B, Solomon EI (2008) J Am Chem Soc 130:676–686

    Article  CAS  PubMed  Google Scholar 

  66. Ghosh S, Cirera J, Vance MA, Ono T, Fujisawa K, Solomon EI (2008) J Am Chem Soc 130:16262–16273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Qayyum MF, Sarangi R, Fujisawa K, Stack TDP, Karlin KD, Hodgson KO, Hedman B, Solomon EI (2013) J Am Chem Soc 135:17417–17431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mehn MP, Fujisawa K, Hegg EL, Que L Jr (2003) J Am Chem Soc 125:7828–7842

    Article  CAS  PubMed  Google Scholar 

  69. Shan X, Rohde JU, Koehntop KD, Zhou Y, Bukowski MR, Costas M, Fujisawa K, Que L Jr (2007) Inorg Chem 46:8410–8417

    Article  CAS  PubMed  Google Scholar 

  70. Mukherjee A, Cranswick MA, Chakrabarti M, Paine TK, Fujisawa K, Münck E, Que L Jr (2010) Inorg Chem 49:3618–3628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fujisawa K, Lehnert N, Ishikawa Y, Okamoto K (2004) Angew Chem Int Ed 43:4944–4947

    Article  CAS  Google Scholar 

  72. Lehnert N, Cornelissen U, Neese F, Ono T, Noguchi Y, Okamoto K, Fujisawa K (2007) Inorg Chem 46:3916–3933

    Article  CAS  PubMed  Google Scholar 

  73. Fujisawa K, Noguchi Y, Miyashita Y, Okamoto K, Lehnert N (2007) Inorg Chem 46:10607–10623

    Article  CAS  PubMed  Google Scholar 

  74. Fujisawa K, Tateda A, Miyashita Y, Okamoto K, Paulat F, Praneeth VKK, Merkle A, Lehnert N (2008) J Am Chem Soc 130:1205–1213

    Article  CAS  PubMed  Google Scholar 

  75. Paulat F, Lehnert N, Ishikawa Y, Okamoto K, Fujisawa K (2008) Inorg Chim Acta 361:901–915

    Article  CAS  Google Scholar 

  76. Fujisawa K, Noguchi N, Noguchi Y, Lehnert N (2013) Acta Cryst C69:943–946

    Google Scholar 

  77. Soma S, Stappen CV, Kiss M, Szilagyi RK, Lehnert N, Fujisawa K (2016) J Biol Inorg Chem 21:757–775

    Article  CAS  PubMed  Google Scholar 

  78. Takisawa H, Morishima Y, Soma S, Szilagyi RK, Fujisawa K (2014) Inorg Chem 53:8191–8193

    Article  CAS  PubMed  Google Scholar 

  79. Fujisawa K, Kuboniwa A, Kiss M, Szilagyi RK (2016) Acta Cryst C72:768–776

    Google Scholar 

  80. Fujisawa K, Shimizu M, Szilagyi RK (2016) Acta Cryst C72:786–790

    Google Scholar 

Download references

Acknowledgements

I would like to thank the authors whose names are found in the cited references for their research efforts and contributions. I am grateful for support from the Japan Society for the Promotion of Science (JSPS) (K.F. 25109505) and the Iwatani Naoji Foundation’s Research Grant. I also thank Professor Larry Que for critical reading of this manuscript. Finally, I would like to express my thanks to our collaborators.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyoshi Fujisawa.

Additional information

This paper is dedicated to the memory of Professor Osamu Hayaishi and my most respected mentor, Professor Nobumasa Kitajima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujisawa, K. A personal perspective on the discovery of dioxygen adducts of copper and iron by Nobumasa Kitajima. J Biol Inorg Chem 22, 237–251 (2017). https://doi.org/10.1007/s00775-016-1432-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-016-1432-1

Keywords

Navigation