Skip to main content
Log in

Sawhorse-type diruthenium tetracarbonyl complexes containing porphyrin-derived ligands as highly selective photosensitizers for female reproductive cancer cells

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Diruthenium tetracarbonyl complexes of the type [Ru2(CO)422-O2CR)2L2] containing a Ru–Ru backbone with four equatorial carbonyl ligands, two carboxylato bridges, and two axial two-electron ligands in a sawhorse-like geometry have been synthesized with porphyrin-derived substituents in the axial ligands [1: R is CH3, L is 5-(4-pyridyl)-10,15,20-triphenyl-21,23H-porphyrin], in the bridging carboxylato ligands [2: RCO2H is 5-(4-carboxyphenyl)-10,15,20-triphenyl-21,23H-porphyrin, L is PPh3; 3: RCO2H is 5-(4-carboxyphenyl)-10,15,20-triphenyl-21,23H-porphyrin, L is 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane], or in both positions [4: RCO2H is 5-(4-carboxyphenyl)-10,15,20-triphenyl-21,23H-porphyrin, L is 5-(4-pyridyl)-10,15,20-triphenyl-21,23H-porphyrin]. Compounds 13 were assessed on different types of human cancer cells and normal cells. Their uptake by cells was quantified by fluorescence and checked by fluorescence microscopy. These compounds were taken up by human HeLa cervix and A2780 and Ovcar ovarian carcinoma cells but not by normal cells and other cancer cell lines (A549 pulmonary, Me300 melanoma, PC3 and LnCap prostate, KB head and neck, MDAMB231 and MCF7 breast, or HT29 colon cancer cells). The compounds demonstrated no cytotoxicity in the absence of laser irradiation but exhibited good phototoxicities in HeLa and A2780 cells when exposed to laser light at 652 nm, displaying an LD50 between 1.5 and 6.5 J/cm2 in these two cell lines and more than 15 J/cm2 for the others. Thus, these types of porphyric compound present specificity for cancer cell lines of the female reproductive system and not for normal cells; thus being promising new organometallic photosensitizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Structure 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brown SB, Brown EA, Walker I (2004) Lancet Oncol 5:497–508

    Article  PubMed  CAS  Google Scholar 

  2. Dolmans DEJGJ, Fukumura D, Jain (2003) Nat Rev Cancer 3:380–387

  3. Nyman ES, Hynninen PH (2004) J Photochem Photobiol B 73:1–28

    Article  PubMed  CAS  Google Scholar 

  4. Qiang YG, Zhang XP, Li J, Huang Z (2006) Chin Med J 119:845–857

    PubMed  CAS  Google Scholar 

  5. Juillerat-Jeanneret L (2006) Trends Cancer Res 2:71–84

    CAS  Google Scholar 

  6. Barrrett AJ, Kennedy JC, Jones RA, Nadeau P, Pottier RH (1990) J Photochem Photobiol B 6:309–323

    Article  Google Scholar 

  7. Rosenberg B, van Camp L, Krigas T (1965) Nature 205:698–699

    Article  PubMed  CAS  Google Scholar 

  8. Reedijk J (1996) Chem Commun 801–806

  9. Wong E, Giandomenico CM (1999) Chem Rev 99:2451–2466

    Article  PubMed  CAS  Google Scholar 

  10. Jakupec MA, Galanski M, Keppler BK (2003) Rev Physiol Biochem Pharmacol 146:1–53

    Article  PubMed  CAS  Google Scholar 

  11. Galanski M, Arion VB, Jakupec MA, Keppler BK (2003) Curr Pharm Des 9:2078–2089

    Article  PubMed  CAS  Google Scholar 

  12. Ang WH, Dyson PJ (2006) Eur J Inorg Chem 4003–4018

  13. Melchart M, Sadler PJ (2006) In: Jaouen G (ed) Bioorganometallics. Wiley-VCH, Weinheim

  14. Lottner C, Bart KC, Bernhardt G, Brunner H (2002) J Med Chem 45:2064–2078

    Article  PubMed  CAS  Google Scholar 

  15. Lottner C, Bart KC, Bernhardt G, Brunner H (2002) J Med Chem 45:2079–2089

    Article  PubMed  CAS  Google Scholar 

  16. Kim YS, Song R, Kim DH, Jun MJ, Sohn YS (2003) Bioorg Med Chem 11:1753–1760

    Article  PubMed  CAS  Google Scholar 

  17. Lottner C, Knuechel R, Bernhardt G, Brunner H (2004) Cancer Lett 203:171–180

    Article  PubMed  CAS  Google Scholar 

  18. Lottner C, Knuechel R, Bernhardt G, Brunner H (2004) Cancer Lett 215:167–177

    Article  PubMed  CAS  Google Scholar 

  19. Schmitt F, Govindaswamy P, Süss-Fink G, Ang WH, Dyson PJ, Juillerat-Jeanneret L, Therrien B (2008) J Med Chem 51:1811–1816

    Article  PubMed  CAS  Google Scholar 

  20. Schmitt F, Govindaswamy P, Zava O, Süss-Fink G, Juillerat-Jeanneret L, Therrien B (2009) J Biol Inorg Chem 14:101–109

    Article  PubMed  CAS  Google Scholar 

  21. Crooks GR, Johnson BFG, Lewis J, Williams IG, Gamlen G (1969) J Chem Soc A 2761–2766

  22. Bruce MI, Jensen CM, Jones NL (1989) Inorg Synth 26:259–261

    Article  CAS  Google Scholar 

  23. Daigle DJ (1998) Inorg Synth 32:40–45

    Article  CAS  Google Scholar 

  24. Poncet S, Meyer S, Richard C, Aubert JD, Juillerat-Jeanneret L (2005) Am J Obstet Gynecol 192:426–432

    Article  PubMed  CAS  Google Scholar 

  25. Vallinayagam R, Schmitt F, Barge J, Wagnières G, Wenger V, Neier R, Juillerat-Jeanneret L (2008) Bioconjug Chem 19:821–839

    Article  PubMed  CAS  Google Scholar 

  26. Gurba P, Vallinayagam R, Schmitt F, Furrer J, Juillerat-Jeanneret L, Neier R (2008) Synthesis 24:3957–3962

    Google Scholar 

  27. Schneider R, Schmitt F, Frochot C, Fort Y, Lourette N, Guillemin F, Muller JF, Barberi-Heyob M (2005) Bioorg Med Chem 13:2799–2808

    Article  PubMed  CAS  Google Scholar 

  28. Johnson BFG, Johnston RD, Lewis J, Williams IG (1971) J Chem Soc A 689–691

  29. Micoli F, Salvi L, Salvini A, Frediani P, Giannelli C (2005) J Organomet Chem 690:4867–4877

    Article  CAS  Google Scholar 

  30. Funatsu K, Kimura A, Imamura T, Ichimura A, Sasaki Y (1997) Inorg Chem 36:1625–1635

    Article  PubMed  CAS  Google Scholar 

  31. Auzias M, Mattsson J, Therrien B, Süss-Fink G (2009) Z Anorg Allg Chem 635:115–119

    Article  CAS  Google Scholar 

  32. Van Rensburg CE, Kreft E, Swarts JC, Dalrymple SR, MacDonald DM, Cooke MW, Aquino MA (2002) Anticancer Res 22:889–892

    PubMed  Google Scholar 

  33. Pongratz M, Schluga P, Jakupec MA, Arion VB, Hartinger CG, Allmaier G, Keppler BK (2004) J Anal At Spectrom 19:46–51

    Article  CAS  Google Scholar 

  34. Vock CA, Ang WH, Scolaro C, Phillips AD, Lagopoulos L, Juillerat-Jeanneret L, Sava G, Scopelliti R, Dyson PJ (2007) J Med Chem 50:2166–2175

    Article  PubMed  CAS  Google Scholar 

  35. Pigeon P, Top S, Vessières A, Huché M, Hillard EA, Salomon E, Jaouen G (2005) J Med Chem 48:2814–2821

    Article  PubMed  CAS  Google Scholar 

  36. Vessières A, Top S, Beck W, Hillard E, Jaouen G (2006) Dalton Trans 529–541

Download references

Acknowledgments

We thank C. Frochot and S. Hupont (DCPR, ENSIC, Nancy, France) for their assistance in determining the singlet oxygen quantum yields. This work was financially supported by the COST program D39 “Metallo-drug design and action.” We thank the Fondation Suisse pour la Lutte Contre le Cancer (grant no. 227) for financing the purchase of the photodynamic therapy laser and Johnson Matthey Research Centre for a generous loan of ruthenium chloride hydrate. This work is also a part of the research project MSM0021620857 supported by Ministry of Education of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bruno Therrien or Lucienne Juillerat-Jeanneret.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitt, F., Auzias, M., Štěpnička, P. et al. Sawhorse-type diruthenium tetracarbonyl complexes containing porphyrin-derived ligands as highly selective photosensitizers for female reproductive cancer cells. J Biol Inorg Chem 14, 693–701 (2009). https://doi.org/10.1007/s00775-009-0482-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-009-0482-z

Keywords

Navigation