Skip to main content
Log in

Electron paramagnetic resonance and Mössbauer spectroscopy of intact mitochondria from respiring Saccharomyces cerevisiae

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Mitochondria from respiring cells were isolated under anaerobic conditions. Microscopic images were largely devoid of contaminants, and samples consumed O2 in an NADH-dependent manner. Protein and metal concentrations of packed mitochondria were determined, as was the percentage of external void volume. Samples were similarly packed into electron paramagnetic resonance tubes, either in the as-isolated state or after exposure to various reagents. Analyses revealed two signals originating from species that could be removed by chelation, including rhombic Fe3+ (g = 4.3) and aqueous Mn2+ ions (g = 2.00 with Mn-based hyperfine). Three S = 5/2 signals from Fe3+ hemes were observed, probably arising from cytochrome c peroxidase and the a3:Cub site of cytochrome c oxidase. Three Fe/S-based signals were observed, with averaged g values of 1.94, 1.90 and 2.01. These probably arise, respectively, from the [Fe2S2]+ cluster of succinate dehydrogenase, the [Fe2S2]+ cluster of the Rieske protein of cytochrome bc 1, and the [Fe3S4]+ cluster of aconitase, homoaconitase or succinate dehydrogenase. Also observed was a low-intensity isotropic g = 2.00 signal arising from organic-based radicals, and a broad signal with g ave = 2.02. Mössbauer spectra of intact mitochondria were dominated by signals from Fe4S4 clusters (60–85% of Fe). The major feature in as-isolated samples, and in samples treated with ethylenebis(oxyethylenenitrilo)tetraacetic acid, dithionite or O2, was a quadrupole doublet with ΔE Q = 1.15 mm/s and δ = 0.45 mm/s, assigned to [Fe4S4]2+ clusters. Substantial high-spin non-heme Fe2+ (up to 20%) and Fe3+ (up to 15%) species were observed. The distribution of Fe was qualitatively similar to that suggested by the mitochondrial proteome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. For a purified Fe4S4 ferredoxin the area under the doublet can be quantified to within 1–2%. Here, the uncertainties are considerably larger, primarily because more than one cluster contributes. The primary contributors to the doublet may be aconitase and dihydroxyacid dehydratase. Because species with slightly different but unresolved parameters contribute, lineshapes are heterogeneously broadened Lorentzians. We used both the Lorentzian and the Voight lineshape options of WMOSS. As Voight shapes are narrower at the base, this option yields, upon visual inspection, a lower estimate for the concentration.

  2. In weak applied fields, the lowest three Kramers doublets of the spin sextet are generally populated at 4.2 K, yielding three Mössbauer spectra per site. Moreover, under these conditions the magnetic splittings, like the effective g values observed by EPR, are very sensitive to the rhombicity parameter E/D. Consequently, the high-spin Fe3+ ions in our sample produce broad and barely discernible features in weak fields. However, the 8.0-T spectra are fairly insensitive to D and E/D, because the large Zeeman splitting puts essentially all Fe3+ ions into the M S  = −5/2 state, facilitating detection and quantification.

Abbreviations

CoQ:

Coenzyme Q

DTT:

Dithiothreitol

EDTA:

Ethylenediaminetetraacetic acid

EGTA:

Ethylenebis(oxyethylenenitrilo)tetraacetic acid

EPR:

Electron paramagnetic resonance

ETF:

Electron transfer flavoprotein

HEPES:

N-(2-Hydroxyethyl)piperazine-N′-ethanesulfonic acid

IM:

Inner membrane

IMS:

Intermembrane space

NHE:

Normal hydrogen electrode

OM:

Outer membrane

SH buffer:

0.6 M sorbitol/20 mM N-(2-hydroxyethyl)piperazine-N′-ethanesulfonic acid buffer pH 7.4

SP buffer:

1.2 M sorbitol/20 mM potassium phosphate buffer pH 7.4

References

  1. Lemire BD, Oyedotun KS (2002) Biochim Biophys Acta Bioenerg 1553:102–116

    Article  CAS  Google Scholar 

  2. Beinert H (2002) Biochim Biophys Acta Bioenerg 1553:7–22

    Article  CAS  Google Scholar 

  3. Maguire JJ, Johnson MK, Morningstar JE, Ackrell BAC, Kearney EB (1985) J Biol Chem 260:10909–10912

    PubMed  CAS  Google Scholar 

  4. Fee JA, Findling KL, Yoshida T, Hille R, Tarr GE, Hearshen DO, Dunham WR, Day EP, Kent TA, Münck E (1984) J Biol Chem 259:124–133

    PubMed  CAS  Google Scholar 

  5. Emptage MH, Kent TA, Kennedy MC, Beinert H, Munck E (1983) Proc Natl Acad Sci USA 80:4674–4678

    Article  PubMed  CAS  Google Scholar 

  6. Wallace MA, Liou LL, Martins J, Clement MHS, Bailey S, Longo VD, Valentine JS, Gralla EB (2004) J Biol Chem 279:32055–32062

    Article  PubMed  CAS  Google Scholar 

  7. Barros MH, Nobrega FG (1999) Gene 233:197–203

    Article  PubMed  CAS  Google Scholar 

  8. Schiffler B, Bureik M, Reinle W, Muller EC, Hannemann F, Bernhardt R (2004) J Inorg Biochem 98:1229–1237

    Article  PubMed  CAS  Google Scholar 

  9. Xia B, Cheng H, Bandarian V, Reed GH, Markley JL (1996) Biochemistry 35:9488–9495

    Article  PubMed  CAS  Google Scholar 

  10. Mitou G, Higgins C, Wittung-Stafshede P, Conover RC, Smith AD, Johnson MK, Gaillard J, Stubna A, Münck E, Meyer J (2003) Biochemistry 42:1354–1364

    Article  PubMed  CAS  Google Scholar 

  11. Zhang S, Sanyal I, Bulboaca GH, Rich A, Flint DH (1994) Arch Biochem Biophys 309:29–35

    Article  PubMed  CAS  Google Scholar 

  12. Berkovitch F, Nicolet Y, Wan JT, Jarrett JT, Drennan CL (2004) Science 303:76–79

    Article  PubMed  CAS  Google Scholar 

  13. Cosper MM, Jameson GNL, Eidsness MK, Huynh BH, Johnson MK (2002) FEBS Lett 529:332–336

    Article  PubMed  CAS  Google Scholar 

  14. Jameson GN, Cosper MM, Hernandez HL, Johnson MK, Huynh BH (2004) Biochemistry 43:2022–2031

    Article  PubMed  CAS  Google Scholar 

  15. Hewitson KS, Ollagnier-de Choudens S, Sanakis Y, Shaw NM, Baldwin JE, Münck E, Roach PL, Fontecave M (2002) J Biol Inorg Chem 7:83–93

    Article  PubMed  CAS  Google Scholar 

  16. Kriek M, Peters L, Takahashi Y, Roach PL (2002) Protein Expr Purif 28:241–245

    Article  CAS  Google Scholar 

  17. Miller JR, Busby RW, Jordan SW, Cheek J, Henshaw TF, Ashley GW, Broderick JB, Cronan JE, Marletta MA (2000) Biochemistry 39:15166–15178

    Article  PubMed  CAS  Google Scholar 

  18. Ollagnier-de Choudens S, Sanakis Y, Hewitson KS, Roach P, Baldwin JE, Münck E, Fontecave M (2000) Biochemistry 39:4165–4173

    Article  PubMed  CAS  Google Scholar 

  19. Velasco JA, Cansado J, Pena MC, Kawakami T, Laborda J (1993) Gene 137:179–185

    Article  PubMed  CAS  Google Scholar 

  20. Flint DH, Emptage MH, Finnegan MG, Fu WG, Johnson MK (1993) J Biol Chem 268:14732–14742

    PubMed  CAS  Google Scholar 

  21. Mühlenhoff U, Gerber J, Richhardt N, Lill R (2003) EMBO J 22:4815–4825

    Article  PubMed  Google Scholar 

  22. Schilke B, Voisine C, Beinert H, Craig E (1999) Proc Natl Acad Sci USA 96:10206–10211

    Article  PubMed  CAS  Google Scholar 

  23. Jensen LT, Culotta VC (2000) Mol Cell Biol 20:3918–3927

    Article  PubMed  CAS  Google Scholar 

  24. Tong WH, Jameson GNL, Huynh BH, Rouault TA (2003) Proc Natl Acad Sci USA 100:9762–9767

    Article  PubMed  CAS  Google Scholar 

  25. Ruzicka FJ, Beinert H (1975) Biochem Biophys Res Comm 66:622–631

    Article  PubMed  CAS  Google Scholar 

  26. Ruzicka FJ, Beinert H (1975) J Biol Chem 252:8440–8445

    Google Scholar 

  27. Paulsen KE, Orville AM, Frerman FE, Lipscomb JD, Stankovich MT (1992) Biochemistry 31:11755–11761

    Article  PubMed  CAS  Google Scholar 

  28. Hunte C, Koepke J, Lange C, Rossmanith T, Michel H (2000) Structure 8:669–684

    Article  PubMed  CAS  Google Scholar 

  29. Bonagura CA, Bhaskar B, Shimizu H, Li HY, Sundaramoorthy M, McRee DE, Goodin DB, Poulos TL (2003) Biochemistry 42:5600–5608

    Article  PubMed  CAS  Google Scholar 

  30. Mowat CG, Miles CS, Munro AW, Cheesman MR, Quaroni LG, Reid GA, Chapman SK (2000) J Biol Inorg Chem 5:584–592

    Article  PubMed  CAS  Google Scholar 

  31. Kojima N, Palmer G (1983) J Biol Chem 258:4908–4913

    Google Scholar 

  32. Brautigan DL, Feinberg BA, Hoffman BM, Margoliash E, Peisach J, Bumberg WE (1977) J Biol Chem 252:574–582

    PubMed  CAS  Google Scholar 

  33. Barros MH, Carlson CG, Glerum DM, Tzagoloff A (2001) FEBS Lett 492:133–138

    Article  PubMed  CAS  Google Scholar 

  34. Hederstedt L, Lewin A, Throne-Holst M (2005) J Bacteriol 187:8361–8369

    Article  PubMed  CAS  Google Scholar 

  35. Glerum DM, Muroff I, Jin C, Tzagoloff A (1997) J Biol Chem 272:19088–19094

    Article  PubMed  CAS  Google Scholar 

  36. Bureik M, Schiffler B, Hiraoka Y, Vogel F, Bernhardt R (2002) Biochemistry 41:2311–2321

    Article  PubMed  CAS  Google Scholar 

  37. Petrova VY, Drescher D, Kujumdzieva AV, Schmitt MJ (2004) Biochem J 380:393–400

    Article  PubMed  CAS  Google Scholar 

  38. Ding H, Harrison K, Lu J (2005) J Biol Chem 280:30432–30437

    Article  PubMed  CAS  Google Scholar 

  39. Lesuisse E, Santos R, Matzanke BF, Knight SAB, Camadro JM, Dancis A (2003) Hum Mol Genet 12:879–889

    Article  PubMed  CAS  Google Scholar 

  40. Sellers VM, Wu CK, Dailey TA, Dailey HA (2001) Biochemistry 40:9821–9827

    Article  PubMed  CAS  Google Scholar 

  41. Ferreira GC, Franco R, Mangravita A, George GN (2002) Biochemistry 41:4809–4818

    Article  PubMed  CAS  Google Scholar 

  42. Wu CK, Dailey HA, Rose JP, Burden A, Sellers VM, Wang BC (2001) Nat Struct Biol 8:156–160

    Article  PubMed  CAS  Google Scholar 

  43. Foury F, Roganti T (2002) J Biol Chem 277:24475–24483

    Article  PubMed  CAS  Google Scholar 

  44. Li LT, Kaplan J (1997) J Biol Chem 272:28485–28493

    Article  PubMed  CAS  Google Scholar 

  45. Moraes CT, Diaz F, Barrientos A (2004) Biochim Biophys Acta Bioenerg 1659:153–159

    Article  CAS  Google Scholar 

  46. Dumont ME, Cardillo TS, Hayes MK, Sherman F (1991) Mol Cell Biol 11:5487–5496

    PubMed  CAS  Google Scholar 

  47. Chloupkova M, LeBard LS, Koeller DM (2003) J Mol Biol 331:155–165

    Article  PubMed  CAS  Google Scholar 

  48. Lill R, Kispal G (2001) Res Microbiol 152:331–340

    Article  PubMed  CAS  Google Scholar 

  49. Lange H, Lisowsky T, Gerber J, Mühlenhoff U, Kispal G, Lill R (2001) EMBO Rep 2:715–720

    Article  PubMed  CAS  Google Scholar 

  50. Stenmark P, Grünler J, Mattsson J, Sindelar PJ, Nordlund P, Berthold DA (2001) J Biol Chem 276:33297–33300

    Article  PubMed  CAS  Google Scholar 

  51. Berthold DA, Voevodskaya N, Stenmark P, Gräslund A, Nordlund P (2002) J Biol Chem 277:43608–43614

    Article  PubMed  CAS  Google Scholar 

  52. Neese F, Zumft WG, Antholine WE, Kroneck PMH (1996) J Am Chem Soc 118:8692–8699

    Article  CAS  Google Scholar 

  53. Barros MH, Johnson A, Tzagoloff A (2004) J Biol Chem 279:49883–49888

    Article  PubMed  CAS  Google Scholar 

  54. Palumaa P, Kangur L, Voronova A, Sillard R (2004) Biochem J 382:307–314

    Article  PubMed  CAS  Google Scholar 

  55. Hiser L, Di Valentin M, Hamer AG, Hosler JP (2000) J Biol Chem 275:619–623

    Article  PubMed  CAS  Google Scholar 

  56. Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC (2001) J Biol Chem 276:38084–38089

    PubMed  CAS  Google Scholar 

  57. Cobine PA, Ojeda LD, Rigby KM, Winge DR (2004) J Biol Chem 279:14447–14455

    Article  PubMed  CAS  Google Scholar 

  58. Luk E, Jensen LT, Culotta VC (2003) J Biol Inorg Chem 8:803–809

    Article  PubMed  CAS  Google Scholar 

  59. Hirabaya T, Harada T (1971) Biochem Biophys Res Commun 45:1369

    Article  Google Scholar 

  60. Sharp RE, White P, Chapman SK, Reid GA (1994) Biochemistry 33:5115–5120

    Article  PubMed  CAS  Google Scholar 

  61. Arscott LD, Gromer S, Schirmer RH, Becker K, Williams CH (1997) Proc Natl Acad Sci USA 94:3621–3626

    Article  PubMed  CAS  Google Scholar 

  62. Staples CR, Ameyibor E, Fu WG, Gardet-Salvi L, Stritt-Etter EL, Knaff DB, Johnson MK (1996) Biochemistry 35:11425–11434

    Article  PubMed  CAS  Google Scholar 

  63. Garrib A, McMurray WC (1986) J Biol Chem 261:8042–8048

    PubMed  CAS  Google Scholar 

  64. Huh WK, Kim ST, Yang KS, Seok YJ, Hah YC, Kang SO (1994) Eur J Biochem 225:1073–1079

    Article  PubMed  CAS  Google Scholar 

  65. Joo HS, Kim SS (1998) J Biochem Mol Biol 31:37–43

    CAS  Google Scholar 

  66. Shan XY, Wang LQ, Hoffmaster R, Kruger WD (1999) J Biol Chem 274:32613–32618

    Article  PubMed  CAS  Google Scholar 

  67. Robinson KM, Lemire BD (1996) J Biol Chem 271:4061–4067

    Article  PubMed  CAS  Google Scholar 

  68. Gin P, Hsu AY, Rothman SC, Jonassen T, Lee PT, Tzagoloff A, Clarke CF (2003) J Biol Chem 278:25308–25316

    Article  PubMed  CAS  Google Scholar 

  69. Oxelmark E, Marchini A, Malanchi I, Magherini F, Jaquet L, Hajibagheri MAN, Blight KJ, Jauniaux JC, Tommasino M (2000) Mol Cell Biol 20:7784–7797

    Article  PubMed  CAS  Google Scholar 

  70. Sands RH, Beinert H (1960) Biochem Biophys Res Commun 3:47–52

    Article  CAS  Google Scholar 

  71. Hartzell CR, Beinert H (1974) Biochim Biophys Acta 368:318–338

    Article  PubMed  CAS  Google Scholar 

  72. Bulteau AL, Ikeda-Saito M, Szweda LI (2003) Biochemistry 42:14846–14855

    Article  PubMed  CAS  Google Scholar 

  73. Lin CIP, Ohnishi T, Clejan L, Beattie DS (1983) Eur J Biochem 137:179–183

    Article  PubMed  CAS  Google Scholar 

  74. Phillips JD, Graham LA, Trumpower BL (1993) J Biol Chem 268:11727–11736

    PubMed  CAS  Google Scholar 

  75. Merbitz-Zahradnik T, Zwicker K, Nett JH, Link TA, Trumpower BL (2003) Biochemistry 42:13637–13645

    Article  PubMed  CAS  Google Scholar 

  76. Shergill JK, Cammack R (1994) Biochim Biophys Acta 1185:43–49

    Article  PubMed  CAS  Google Scholar 

  77. Shergill JK, Cammack R, Chen JH, Fisher MJ, Madden S, Rees HH (1995) Biochem J 307:719–728

    PubMed  CAS  Google Scholar 

  78. Albract SPJ, Subramanian J (1977) Biochim Biophys Acta 462:36–48

    Article  Google Scholar 

  79. Gavin CE, Gunter KK, Gunter TE (1999) Neurotoxicology 20:445–453

    PubMed  CAS  Google Scholar 

  80. Guldutuna S, Zimmer G, Leuschner M, Bhatti S, Elze A, Beisinger B, Hofmann M, Leuschner U (1999) Biochim Biophys Acta 1453:396–406

    PubMed  CAS  Google Scholar 

  81. Tuckey RC, McKinley AJ, Headlam MJ (2001) Eur J Biochem 268:2338–2343

    Article  PubMed  CAS  Google Scholar 

  82. Albracht SPJ, Leeuwerik FJ, VanSwol B (1979) FEBS Lett 104:197–200

    Article  PubMed  CAS  Google Scholar 

  83. Albracht SPJ (1980) Biochim Biophys Acta 612:11–28

    PubMed  CAS  Google Scholar 

  84. Albracht SPJ, VanVerseveld HW, Hagen WR, Kalkman ML (1980) Biochim Biophys Acta 593:173–186

    Article  PubMed  CAS  Google Scholar 

  85. Diekert K, de Kroon AIPM, Kispal G, Lill R (2000) In: Pon LA, Schon EA (eds) Methods in yeast genetics, vol 65. Academic, San Diego

  86. Cleland WW (1964) Biochemistry 3:480

    Article  PubMed  CAS  Google Scholar 

  87. Barondeau DP, Roberts LM, Lindahl PA (1994) J Am Chem Soc 116:3442–3448

    Article  CAS  Google Scholar 

  88. Wright R (2000) Microsc Res Tech 51:496–510

    Article  PubMed  CAS  Google Scholar 

  89. Pelley JW, Garner CW, Little GH (1978) Anal Biochem 86:341–343

    Article  PubMed  CAS  Google Scholar 

  90. Toyoshima S, Wantanabe F, Saido H, Miyatake K, Nakano Y (1995) J Nutr 125:2846–2850

    PubMed  CAS  Google Scholar 

  91. Sapan CV, Lundlad RL, Price NC (1999) Biotechnol Appl Biochem 29:99–108

    PubMed  CAS  Google Scholar 

  92. Dineley KE, Richards LL, Votyakova TV, Reynolds IJ (2005) Mitochondria 5:55–65

    Article  CAS  Google Scholar 

  93. Lund P, Wiggins D (1990) Biochim Biophys Acta 1018:98–102

    Article  PubMed  CAS  Google Scholar 

  94. Hackenbrock CR (1968) J Cell Biol 37:345–369

    Article  PubMed  CAS  Google Scholar 

  95. Zischka H, Weber G, Weber PJA, Posch A, Braun RJ, Bühringer D, Schneider U, Nissum M, Meitinger T, Ueffing M, Eckerskorn C (2003) Proteomics 3:906–916

    Article  PubMed  CAS  Google Scholar 

  96. Shaw JM, Nunnari J (2002) Trends Cell Biol 12:178–184

    Article  PubMed  CAS  Google Scholar 

  97. Egner A, Jakobs S, Hell SW (2002) Proc Natl Acad Sci USA 99:3370–3375

    Article  PubMed  CAS  Google Scholar 

  98. Polcic P, Sabova L, Kolarov J (1997) FEBS Lett 412:207–210

    Article  PubMed  CAS  Google Scholar 

  99. Soubannier V, Vaillier J, Paumard P. Coulary B, Schaeffer J, Velours J (2002) J Biol Chem 277:10739–10745

    Article  PubMed  CAS  Google Scholar 

  100. Boyle GM, Roucou X, Nagley P, Devenish RJ, Prescott M (1999) Eur J Biochem 262:315–323

    Article  PubMed  CAS  Google Scholar 

  101. Wickman HH, Klein MP, Shirley DA (1964) Phys Rev 152:345–357

    Article  Google Scholar 

  102. Mayhew SG (1978) Eur J Biochem 85:535–547

    Article  PubMed  CAS  Google Scholar 

  103. Lindahl PA, Day EP, Kent TA, Orme-Johnson WH, Münck E (1985) J Biol Chem 260:1160–1173

    Google Scholar 

  104. Andrew CR, Kemper LJ, Busche TL, Tiwari AM, Kecskes MC, Stafford JM, Croft LC, Lu S, Moenne-Loccoz P, Huston W, Moir JWB, Eady RR (2005) Biochemistry 44:8664–8672

    Article  PubMed  CAS  Google Scholar 

  105. Miyoshi H, Tokutake N, Imaeda Y, Akagi T, Iwamura H (1995) Biochim Biophys Acta 1229:149–154

    Article  PubMed  Google Scholar 

  106. Babcock M, deSilva D, Oaks R, DavisKaplan S, Jiralerspong S, Montermini L, Pandolfo M, Kaplan J (1997) Science 276:1709–1712

    Article  PubMed  CAS  Google Scholar 

  107. Foury F, Cazzalini O (1997) FEBS Lett 411:373–377

    Article  PubMed  CAS  Google Scholar 

  108. Tangeras A, Flatmark T, Backstrom D, Ehrenberg A (1980) Biochim Biophys Acta 589:162–175

    Article  PubMed  CAS  Google Scholar 

  109. Kispal G, Csere P, Prohl C, Lill R (1999) EMBO J 18:3981–3989

    Article  PubMed  CAS  Google Scholar 

  110. Petrat F, de Groot H, Rauen U (2001) Biochem J 356:61–69

    Article  PubMed  CAS  Google Scholar 

  111. Petrat F, Weisheit D, Lensen M, de Groot H, Sustmann R, Rauen U (2002) Biochem J 362:137–147

    Article  PubMed  CAS  Google Scholar 

  112. Sturm B, Bistrich U, Schranzhofer M, Sarsero JP, Rauen U, Scheiber-Mojdehkar B, de Groot H, Ioannou P, Petrat F (2005) J Biol Chem 280:6701–6708

    Article  PubMed  CAS  Google Scholar 

  113. Lange H, Kispal G, Lill R (1999) J Biol Chem 274:18989–18996

    Google Scholar 

  114. Agar JN, Krebs C, Frazzon J, Huynh BH, Dean DR, Johnson MK (2000) Biochemistry 39:7856–7862

    Article  PubMed  CAS  Google Scholar 

  115. Franco R, Moura JJG, Moura I, Huynh BH, Forbes WS, Ferreira GC (1995) J Biol Chem 270:26352–26357

    Article  PubMed  CAS  Google Scholar 

  116. Haile DJ, Rouault TA, Harford JB, Kennedy MC, Blondin GA, Beinert H, Klausner RD (1992) Proc Natl Acad Sci USA 89:11735–11739

    Article  PubMed  CAS  Google Scholar 

  117. Henze K, Martin W (2003) Nature 426:127–128

    Article  PubMed  CAS  Google Scholar 

  118. Mühlenhoff U, Lill R (2000) Biochim Biophys Acta Bioenerg 1459:370–382

    Article  Google Scholar 

  119. Kilpatrick LK, Kennedy MC, Beinert H, Czernuszewicz RC, Qiu D, Spiro TG (1994) J Am Chem Soc 116:4053–4061

    Article  CAS  Google Scholar 

  120. Jackson TA, Karapetian A, Miller AF, Brunold TC (2004) J Am Chem Soc 126:12477–12491

    Article  PubMed  CAS  Google Scholar 

  121. Un S, Tabares LC, Cortez N, Hiraoka BY, Yamakura F (2004) J Am Chem Soc 126:2720–2726

    Article  PubMed  CAS  Google Scholar 

  122. Srinivasan C, Liba A, Imlay JA, Valentine JS, Gralla EB (2000) J Biol Chem 275:29187–29192

    Article  PubMed  CAS  Google Scholar 

  123. Werth MT, Sices H, Cecchini G, Schroder I, Lasage S, Gunsalus RP, Johnson MK (1992) FEBS Lett 299:1–4

    Article  PubMed  CAS  Google Scholar 

  124. Hirst J, Sucheta A, Ackrell BAC, Armstrong FA (1996) J Am Chem Soc 118:5031–5038

    Article  CAS  Google Scholar 

  125. Sucheta A, Ackrell BAC, Cochran B, Armstrong FA (1992) Nature 356:361–362

    Article  PubMed  CAS  Google Scholar 

  126. Link TA, Hagen WR, Pierik AJ, Assmann C, von Jagow G (1992) Eur J Biochem 208:685–691

    Article  PubMed  CAS  Google Scholar 

  127. Beinert H, Shaw RW (1977) Biochim Biophys Acta 462:121–130

    Article  PubMed  CAS  Google Scholar 

  128. Aasa R, Albracht SPJ, Falk KE, Lanne B, Vanngard T (1976) Biochim Biophys Acta 422:260–272

    PubMed  CAS  Google Scholar 

  129. Gorbikova EA, Vuorilehto K, Wikstrom M, Verkhovsky MI (2006) Biochemistry 45:5641–5649

    Article  PubMed  CAS  Google Scholar 

  130. Nicholls P, Elliott WB (1974) In: Worwood M, Jacobs A (eds) Iron in biochemistry and medicine. Academic, New York

  131. Wittenberg BA, Kampa L, Wittenberg JB, Blumberg WE, Peisach J (1968) J Biol Chem 243:1863–1870

    PubMed  CAS  Google Scholar 

  132. Coulson AFW, Erman JE, Yonetani T (1971) J Biol Chem 246:917–924

    PubMed  CAS  Google Scholar 

  133. Goodin DB, McRee DE (1993) Biochemistry 32:3313–3324

    Article  PubMed  CAS  Google Scholar 

  134. Bellei M, Jakopitsch C, Battistuzzi G, Sola M, Obinger C (2006) Biochemistry 45:4768–4774

    Article  PubMed  CAS  Google Scholar 

  135. Cassanova N, O’Brien KM, Stahl BT, McClure T, Poyton RO (2005) J Biol Chem 280:7645–7653

    Article  PubMed  CAS  Google Scholar 

  136. Reynolds MF, Shelver D, Kerby RL, Parks RB, Roberts GP, Burstyn JN (1998) J Am Chem Soc 120:9080–9081

    Article  CAS  Google Scholar 

  137. Lett CM, Guillemette JG (2002) Biochem J 362:281–287

    Article  PubMed  CAS  Google Scholar 

  138. Yu L, Dong J-H, Yu C-A (1986) Biochim Biophys Acta Bioenerg 852:203–211

    Article  CAS  Google Scholar 

  139. Tegoni M, Silvestrini MC, Guigliarelli B, Asso M, Brunori M, Bertrand P (1998) Biochemistry 37:12761–12771

    Article  PubMed  CAS  Google Scholar 

  140. Anemüller S, Bill E, Schäfer G, Trautwein A, Teixeira M (1992) Eur J Biochem 210:133–138

    Article  PubMed  Google Scholar 

  141. Lester RL, Crane FL (1959) J Biol Chem 234:2169–2175

    PubMed  CAS  Google Scholar 

  142. Waldeck AR, Stowell MHB, Lee HK, Hung SC, Matsson M, Hederstedt L, Ackrell BAC, Chan SI (1997) J Biol Chem 272:19373–19382

    Article  PubMed  CAS  Google Scholar 

  143. Lukoyanov D, Berry SM, Lu Y, Antholine WE, Scholes CP (2002) Biophys J 82:2758–2766

    Article  PubMed  CAS  Google Scholar 

  144. Gamelin DR, Randall DW, Hay MT, Houser RP, Mulder TC, Canters GW, de Vries S, Tolman WB, Lu Y, Solomon EI (1998) J Am Chem Soc 120:5246–5263

    Article  CAS  Google Scholar 

  145. Nittis T, George GN, Winge DR (2001) J Biol Chem 276:42520–42526

    Article  PubMed  CAS  Google Scholar 

  146. Heaton DN, George GN, Garrison G, Winge DR (2001) Biochemistry 40:743–751

    Article  PubMed  CAS  Google Scholar 

  147. Ludovico P, Sansonetty F, Corte-Real M (2001) Microbiology 147:3335–3343

    PubMed  CAS  Google Scholar 

  148. Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, Meyer HE, Schonfisch B, Perschil I, Chacinska A, Guiard B et al (2003) Proc Natl Acad Sci USA 100:13207–13212

    Article  PubMed  CAS  Google Scholar 

  149. Huh W-K, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Nature 425:686–691

    Article  PubMed  CAS  Google Scholar 

  150. Prokisch H, Scharfe C, Camp DG, Xiao WZ, David L, Andreoli C, Monroe ME, Moore RJ, Gritsenko MA, Kozany C, Hixson KK, Mottaz HM, Zischka H, Ueffing M, Herman ZS, Davis RW, Meitinger T, Oefner PJ, Smith RD, Steinmetz LM (2004) PLoS Biol 2:795–804

    Article  CAS  Google Scholar 

  151. Forster J, Famili I, Fu P, Palsson BO, Nielsen J (2003) Genome Res 13(2):244–253

    Article  PubMed  CAS  Google Scholar 

  152. Ohlmeier S, Kastaniotis AJ, Hiltunen JK, Bergmann U (2004) J Biol Chem 6:3956–3979

    Google Scholar 

  153. Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS (2003) Nature 425:737–741

    Article  PubMed  CAS  Google Scholar 

  154. Biswas SK, Yamaguchi M, Naoe N, Takashima T, Takeo K (2003) J Electron Microsc 52:133–143

    Article  Google Scholar 

  155. Trumpower B (1990) J Biol Chem 265:11409–11412

    PubMed  CAS  Google Scholar 

  156. Murphy MEP, Nall BT, Brayer GD (1992) J Mol Biol 227:160–176

    Article  PubMed  CAS  Google Scholar 

  157. Daum G et al (1982) J Biol Chem 257:13028–13033

    PubMed  CAS  Google Scholar 

  158. Goodin DB, Davidson MG, Roe JA, Mauk AG, Smith M (1991) Biochemistry 30:4953–4962

    Article  PubMed  CAS  Google Scholar 

  159. Capeillereblandin G, Bray RC, Iwatsubo M, Labeyrie F (1975) Eur J Biochem 54:549–566

    Article  CAS  Google Scholar 

  160. Ebert CE, Ghosh M, Wang YD, Beattie DS (2003) Biochim Biophys Acta 1607:65–78

    Article  PubMed  CAS  Google Scholar 

  161. Orme-Johnson NR, Hansen RE, Beinert H (1971) Biochem Biophys Res Commun 45:871

    Article  PubMed  CAS  Google Scholar 

  162. Salerno JC (1984) J Biol Chem 259:2331–2336

    PubMed  CAS  Google Scholar 

  163. Svensson-Ek M, Abramson J, Larsson G, Tornroth S, Brzezinski P, Iwata S (2002) J Mol Biol 321(2):329–339

    Article  PubMed  CAS  Google Scholar 

  164. Babcock GT, Vickery LE, Palmer G (1978) J Biol Chem 253:2400–2411

    PubMed  CAS  Google Scholar 

  165. Cheesman MR, Oganesyan VS, Watmough NJ, Butler CS, Thomson AJ (2004) J Am Chem Soc 126:4157–4166

    Article  PubMed  CAS  Google Scholar 

  166. Beinert H, Ackrell BAC, Kearney EB, Singer TP (1974) Biochem Biophys Res Commun 58:564–572

    Article  PubMed  CAS  Google Scholar 

  167. Peterson J, Vibat C, Gennis RB (1994) FEBS Lett 355:155–156

    Article  PubMed  CAS  Google Scholar 

  168. Svensson B, Andersson KK, Hederstedt L (1996) Eur J Biochem 238:287–295

    Article  PubMed  CAS  Google Scholar 

  169. Jonassen T, Proft M, Randez-Gil F, Schultz JR, Marbois BN, Entian KD, Clarke CF (1998) J Biol Chem 273:3351–3357

    Article  PubMed  CAS  Google Scholar 

  170. Rea S (2001) FEBS Lett 509:389–394

    Article  PubMed  CAS  Google Scholar 

  171. Liu KE, Lippard SJ (1991) J Biol Chem 266:12836–12839

    PubMed  CAS  Google Scholar 

  172. Fox BG, Hendrich MP, Surerus KK, Anderson KK, Froland WA, Lipscomb JD, Münck E (1993) J Am Chem Soc 115:3688–3701

    Article  CAS  Google Scholar 

  173. Regev-Rudzki N, Karniely S, Ben-Haim NN, Pines O (2005) Mol Biol Cell 16:4163–4171

    Article  PubMed  CAS  Google Scholar 

  174. Tong JJ, Feinberg BA (1994) J Biol Chem 269:24920–24927

    PubMed  CAS  Google Scholar 

  175. Smith AD, Jameson GNL, Dos Santos PC, Agar JN, Naik S, Krebs C, Frazzon J, Dean DR, Huynh BH, Johnson MK (2005) Biochemistry 44:12955–12969

    Article  PubMed  CAS  Google Scholar 

  176. Pelzer W, Muhlenhoff U, Diekert K, Siegmund K, Kispal G, Lill R (2000) FEBS Lett 476:134–139

    Article  PubMed  CAS  Google Scholar 

  177. Picciocchi A, Douce R, Alban C (2003) J Biol Chem 278:24966–24975

    Article  PubMed  CAS  Google Scholar 

  178. Ugulava NB, Gibney BR, Jarrett JT (2001) Biochemistry 40:8343–8351

    Article  PubMed  CAS  Google Scholar 

  179. Duin EC, Lafferty ME, Crouse BR, Allen RM, Sanyal I, Flint DH, Johnson MK (1997) Biochemistry 36:11811–11820

    Article  PubMed  CAS  Google Scholar 

  180. Hoja U, Marthol S, Hofmann J, Stegner S, Schulz R, Meier S, Greiner E, Schweizer E (2004) J Biol Chem 279:21779–21786

    Article  PubMed  CAS  Google Scholar 

  181. Ollagnier-de Choudens S, Fontecave M (1999) FEBS Lett 453:25–28

    Article  PubMed  CAS  Google Scholar 

  182. Cosper MM, Jameson GNL, Hernandez HL, Krebs C, Huynh BH, Johnson MK (2004) Biochemistry 43:2007–2021

    Article  PubMed  CAS  Google Scholar 

  183. Branda SS, Cavadini P, Adamec J, Kalousek F, Taroni F, Isaya G (1999) J Biol Chem 274:22763–22769

    Article  PubMed  CAS  Google Scholar 

  184. He YN, Alam SL, Proteasa SV, Zhang Y, Lesuisse E, Dancis A, Stemmler TL (2004) Biochemistry 43:16254–16262

    Article  PubMed  CAS  Google Scholar 

  185. Bou-Abdallah F, Adinolfi S, Pastore A, Laue TM, Chasteen ND (2004) J Mol Biol 341:605–615

    Article  PubMed  CAS  Google Scholar 

  186. Dawson JH, Bracete AM, Huff AM, Kadkhodayan S, Zeitler CM, Sono M, Chang CK, Loewen PC (1991) FEBS Lett 295:123–126

    Article  PubMed  CAS  Google Scholar 

  187. Ioannidis N, Cooper CE, Poole RK (1992) Biochem J 288:649–655

    PubMed  CAS  Google Scholar 

  188. Macheroux P, Hill S, Austin S, Eydmann T, Jones T, Kim SO, Poole R, Dixon R (1998) Biochem J 332:413–419

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the following people: Art Johnson and Holly Cargill (Department of Biochemistry and Biophysics, Texas A&M University) for instructions on isolating mitochondria; Rola Barhoumi (Image Analysis Laboratory, Texas A&M University) and Anne Ellis (Microscopy and Imaging Center, Texas A&M University) for collecting microscopic images; Jinny Johnson (Protein Chemistry Laboratory, Texas A&M University) for performing amino acid analyses; David P. Giedroc (Department of Biochemistry and Biophysics, Texas A&M University) for access to his atomic absorption spectrophotometer; William James (Department of Chemistry, Texas A&M University) for training on and assistance with the inductively coupled plasma mass spectrometer; Shelly Henderson Possi for help in isolating some batches and in measuring O2 consumption; Tanner Freeman for preparing one of the EPR samples; and Roland Lill for helpful discussion.

This study was supported by the Robert A. Welch Foundation (A1170) and The National Institutes of Health [GM077387 (M.P.H.), EB001475 (E.M.) and The Chemistry Biology Interface training program (B.N.H. and J.G)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Lindahl.

Additional information

Note added in proof: It now appears less likely that Isa1p and Isa2p contain Fe/S clusters similar to those in other Fe/S scaffold proteins.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2007_275_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hudder, B.N., Morales, J.G., Stubna, A. et al. Electron paramagnetic resonance and Mössbauer spectroscopy of intact mitochondria from respiring Saccharomyces cerevisiae . J Biol Inorg Chem 12, 1029–1053 (2007). https://doi.org/10.1007/s00775-007-0275-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0275-1

Keywords

Navigation