Skip to main content

Advertisement

Log in

Epitope location for two monoclonal antibodies against human cystatin C, representing opposite aggregation inhibitory properties

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Human cystatin C (hCC), like many other amyloidogenic proteins, dimerizes and possibly makes aggregates by subdomain swapping. Inhibition of the process should suppress the fibrillogenesis leading to a specific amyloidosis (hereditary cystatin C amyloid angiopathy, HCCAA). It has been reported that exogenous agents like monoclonal antibodies against cystatin C are able to suppress formation of cystatin C dimers and presumably control the neurodegenerative disease. We have studied in detail two monoclonal antibodies (mAbs) representing very different aggregation inhibitory potency, Cyst10 and Cyst28, to find binding sites in hCC sequence responsible for the immunocomplex formation and pave the way for possible immunotherapy of HCCAA. We used the epitope extraction/excision mass spectrometry approach with the use of different enzymes complemented by affinity studies with synthetic hCC fragments as a basic technique for epitope identification. The results were analyzed in the context of hCC structure allowing us to discuss the binding sites for both antibodies. Epitopic sequences for clone Cyst28 which is a highly potent dimerization inhibitor were found in N-terminus, loop 1 and 2 (L1, L2) and fragments of β2 and β3 strands. The crucial difference between conformational epitope sequences found for both mAbs seems to be the lack of interactions with hCC via N-terminus and the loop 1 in the case of mAb Cyst10. Presumably the interactions of mAbs with hCC via L1 and β sheet fragments make the hCC structure rigid and unable to undergo the swapping process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrahamson M, Ritonja A, Brown MA et al (1987) Identification of the probable inhibitory reactive sites of the cysteine proteinase inhibitors human cystatin C and chicken cystatin. J Biol Chem 262:9688–9694

    CAS  PubMed  Google Scholar 

  • Alvarez-Fernandez M, Barrett AJ, Gerhartz B et al (1999) Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J Biol Chem 274:19195–19203

    Article  CAS  PubMed  Google Scholar 

  • Anglister J, Scherf T, Zilber B et al (1993) Two-dimensional NMR investigations of the interactions of antibodies with peptide antigens. FASEB J 7:1154–1162

    CAS  PubMed  Google Scholar 

  • Björck L, Grubb A, Kjellén L (1990) Cystatin C, a human proteinase inhibitor, blocks replication of herpes simplex virus. J Virol 64:941–943

    PubMed  PubMed Central  Google Scholar 

  • Bokarewa M, Abrahamson M, Levshin N et al (2007) Cystatin C binds serum amyloid A, downregulating its cytokine-generating properties. J Rheumatol 34:1293–1301

    CAS  PubMed  Google Scholar 

  • Butler JE (2000) Solid supports in enzyme-linked immunosorbent assay and other solid-phase immunoassays. Methods 22:4–23. doi:10.1006/meth.2000.1031

    Article  CAS  PubMed  Google Scholar 

  • Cerutti ML, Ferreiro DU, Sanguineti S et al (2006) Antibody recognition of a flexible epitope at the DNA binding site of the human papillomavirus transcriptional regulator E2. Biochemistry 45:15520–15528. doi:10.1021/bi0615184

    Article  CAS  PubMed  Google Scholar 

  • Dhungana S, Fessler MB, Tomer KB (2009) Epitope mapping by differential chemical modification of antigens. Methods Mol Biol 524:119–134. doi:10.1007/978-1-59745-450-6_9

    Article  CAS  PubMed  Google Scholar 

  • Dodds ED, Seipert RR, Clowers BH et al (2009) Analytical performance of immobilized pronase for glycopeptide footprinting and implications for surpassing reductionist glycoproteomics. J Proteome Res 8:502–512. doi:10.1021/pr800708h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fields GB, Noble RL (1990) Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids. Int J Pept Protein Res 35:161–214

    Article  CAS  PubMed  Google Scholar 

  • Gershoni JM, Roitburd-Berman A, Siman-Tov DD et al (2007) Epitope mapping: the first step in developing epitope-based vaccines. BioDrugs 21:145–156

    Article  CAS  PubMed  Google Scholar 

  • Hager-Braun C, Katinger H, Tomer KB (2006) The HIV-neutralizing monoclonal antibody 4E10 recognizes N-terminal sequences on the native antigen. J Immunol 176:7471–7481

    Article  CAS  PubMed  Google Scholar 

  • He JJ, Quiocho FA (1991) A nonconservative serine to cysteine mutation in the sulfate-binding protein, a transport receptor. Science 251:1479–1481

    Article  CAS  PubMed  Google Scholar 

  • Janowski R, Kozak M, Jankowska E et al (2001) Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping. Nat Struct Biol 8:316–320. doi:10.1038/86188

    Article  CAS  PubMed  Google Scholar 

  • Janowski R, Abrahamson M, Grubb A, Jaskolski M (2004) Domain swapping in N-truncated human cystatin C. J Mol Biol 341:151–160. doi:10.1016/j.jmb.2004.06.013

    Article  CAS  PubMed  Google Scholar 

  • Jerabek-Willemsen M, Wienken CJ, Braun D et al (2011) Molecular interaction studies using microscale thermophoresis. Assay Drug Dev Technol 9:342–353. doi:10.1089/adt.2011.0380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jerabek-Willemsen M, André T, Wanner R et al (2014) MicroScale Thermophoresis: interaction analysis and beyond. J Mol Struct 1077:101–113. doi:10.1016/j.molstruc.2014.03.009

    Article  CAS  Google Scholar 

  • Jeyarajah S, Parker CE, Summer MT, Tomer KB (1998) Matrix-assisted laser desorption ionization/mass spectrometry mapping of human immunodeficiency virus-gp120 epitopes recognized by a limited polyclonal antibody. J Am Soc Mass Spectrom 9:157–165

    Article  CAS  PubMed  Google Scholar 

  • Juszczyk P, Szymanska A, Rodziewicz-Motowidlo S et al (2008) Human cystatin C interactions with amyloidogenic molecules. J Pept Sci 14:29

    Google Scholar 

  • Juszczyk P, Paraschiv G, Szymanska A et al (2009) Binding epitopes and interaction structure of the neuroprotective protease inhibitor cystatin C with beta-amyloid revealed by proteolytic excision mass spectrometry and molecular docking simulation. J Med Chem 52:2420–2428. doi:10.1021/jm801115e

    Article  CAS  PubMed  Google Scholar 

  • Lescar J, Stouracova R, Riottot MM et al (1997) Three-dimensional structure of an Fab-peptide complex: structural basis of HIV-1 protease inhibition by a monoclonal antibody. J Mol Biol 267:1207–1222. doi:10.1006/jmbi.1997.0950

    Article  CAS  PubMed  Google Scholar 

  • Marzilli LA, Golden TR, Cotter RJ, Woods AS (2000) Peptide sequence information derived by pronase digestion and ammonium sulfate in-source decay matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Am Soc Mass Spectrom 11:1000–1008. doi:10.1016/S1044-0305(00)00170-7

    Article  CAS  PubMed  Google Scholar 

  • Mullett WM, Lai EP, Yeung JM (2000) Surface plasmon resonance-based immunoassays. Methods 22:77–91. doi:10.1006/meth.2000.1039

    Article  CAS  PubMed  Google Scholar 

  • Mussap M, Plebani M (2004) Biochemistry and clinical role of human cystatin C. Crit Rev Clin Lab Sci 41:467–550. doi:10.1080/10408360490504934

    Article  CAS  PubMed  Google Scholar 

  • Nilsson M, Wang X, Rodziewicz-Motowidlo S et al (2004) Prevention of domain swapping inhibits dimerization and amyloid fibril formation of cystatin C: use of engineered disulfide bridges, antibodies, and carboxymethylpapain to stabilize the monomeric form of cystatin C. J Biol Chem 279:24236–24245. doi:10.1074/jbc.M402621200

    Article  CAS  PubMed  Google Scholar 

  • Olafsson I, Löfberg H, Abrahamson M, Grubb A (1988) Production, characterization and use of monoclonal antibodies against the major extracellular human cysteine proteinase inhibitors cystatin C and kininogen. Scand J Clin Lab Invest 48:573–582

    Article  CAS  PubMed  Google Scholar 

  • Orlikowska M, Jankowska E, Kołodziejczyk R et al (2011) Hinge-loop mutation can be used to control 3D domain swapping and amyloidogenesis of human cystatin C. J Struct Biol 173:406–413. doi:10.1016/j.jsb.2010.11.009

    Article  CAS  PubMed  Google Scholar 

  • Östner G, Lindström V, Postnikov AB et al (2011) High throughput testing of drug library substances and monoclonal antibodies for capacity to reduce formation of cystatin C dimers to identify candidates for treatment of hereditary cystatin C amyloid angiopathy. Scand J Clin Lab Invest 71:676–682. doi:10.3109/00365513.2011.621026

    Article  PubMed  Google Scholar 

  • Papac DI, Hoyes J, Tomer KB (1994) Epitope mapping of the gastrin-releasing peptide/anti-bombesin monoclonal antibody complex by proteolysis followed by matrix-assisted laser desorption ionization mass spectrometry. Protein Sci 3:1485–1492. doi:10.1002/pro.5560030914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parham P (1983) On the fragmentation of monoclonal IgG1, IgG2a, and IgG2b from BALB/c mice. J Immunol 131:2895–2902

    CAS  PubMed  Google Scholar 

  • Parker CE, Tomer KB (2002) MALDI/MS-based epitope mapping of antigens bound to immobilized antibodies. Mol Biotechnol 20:49–62. doi:10.1385/MB:20:1:049

    Article  CAS  PubMed  Google Scholar 

  • Parker CE, Papac DI, Trojak SK, Tomer KB (1996) Epitope mapping by mass spectrometry: determination of an epitope on HIV-1 IIIB p26 recognized by a monoclonal antibody. J Immunol 157:198–206

    CAS  PubMed  Google Scholar 

  • Peter JF, Tomer KB (2001) A general strategy for epitope mapping by direct MALDI-TOF mass spectrometry using secondary antibodies and cross-linking. Anal Chem 73:4012–4019

    Article  CAS  PubMed  Google Scholar 

  • Ponomarenko JV, Van Regenmortel MHV (2009) B cell epitope prediction. Wiley-Blackwell

  • Seidel SA, Dijkman PM, Lea WA et al (2013) Microscale thermophoresis quantifies biomolecular interactions under previously challenging conditions. Methods 59:301–315. doi:10.1016/j.ymeth.2012.12.005

    Article  CAS  PubMed  Google Scholar 

  • Simmons DT (1988) Geometry of the simian virus 40 large tumor antigen-DNA complex as probed by protease digestion. Proc Natl Acad Sci USA 85:2086–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sladewska A, Szymanska A, Kordalska M et al (2011) Identification of the epitope for anti-cystatin C antibody. J Mol Recognit 24:687–699. doi:10.1002/jmr.1100

    Article  CAS  PubMed  Google Scholar 

  • Spodzieja MS, Szymanska A, Sladewska A et al (2010) Characterization of human Cystatin C (hCC)—Serum Amyloid A (SAA) complex. J Pept Sci 16:112

    Google Scholar 

  • Spodzieja M, Szymańska A, Kołodziejczyk A et al (2012) Interaction of serum amyloid A with human cystatin C–identification of binding sites. J Mol Recognit 25:513–524. doi:10.1002/jmr.2220

    Article  CAS  PubMed  Google Scholar 

  • Spodzieja M, Rafalik M, Szymańska A et al (2013) Interaction of serum amyloid A with human cystatin C–assessment of amino acid residues crucial for hCC-SAA formation (part II). J Mol Recognit 26:415–425. doi:10.1002/jmr.2283

    Article  CAS  PubMed  Google Scholar 

  • Szymanska A, Jankowska E, Orlikowska M et al (2012) Influence of point mutations on the stability, dimerization, and oligomerization of human cystatin C and its L68Q variant. Front Mol Neurosci 5:82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szymańska A, Radulska A, Czaplewska P et al (2009) Governing the monomer-dimer ratio of human cystatin c by single amino acid substitution in the hinge region. Acta Biochim Pol 56:455–463

    PubMed  Google Scholar 

  • Wahlbom M, Wang X, Lindström V et al (2007) Fibrillogenic oligomers of human cystatin C are formed by propagated domain swapping. J Biol Chem 282:18318–18326. doi:10.1074/jbc.M611368200

    Article  CAS  PubMed  Google Scholar 

  • Wang LF, Yu M (2004) Epitope identification and discovery using phage display libraries: applications in vaccine development and diagnostics. Curr Drug Targets 5:1–15

    Article  PubMed  Google Scholar 

  • Wienken CJ, Baaske P, Rothbauer U et al (2010) Protein-binding assays in biological liquids using microscale thermophoresis. Nat Commun 1:100. doi:10.1038/ncomms1093

    Article  PubMed  Google Scholar 

  • Williams JG, Tomer KB, Hioe CE et al (2006) The antigenic determinants on HIV p24 for CD4+ T cell inhibiting antibodies as determined by limited proteolysis, chemical modification, and mass spectrometry. J Am Soc Mass Spectrom 17:1560–1569. doi:10.1016/j.jasms.2006.06.011

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Cui W, Gross ML (2014) Mass spectrometry for the biophysical characterization of therapeutic monoclonal antibodies. FEBS Lett 588:308–317. doi:10.1016/j.febslet.2013.11.027

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by the grant from National Science Centre, Preludium 2011/01/N/ST5/05642 (Izabela Behrendt). We also would like to acknowledge the support of DS 530-8440-D379-13 National Science Centre Sonata Bis1 based on the Decision No. DEC-2012/05/E/ST5/03796 (grant to dr Paulina Czaplewska). The project was also supported by Mobi4Health EU project which allowed us to use high quality mass spectrometers. Mobi4Helath project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 316094 and from the Ministry of Science and Higher Education. We would like to thank NanoTemper Technologies GmbH Company for the opportunity to use the Monolith NT.115 system for the measurement of the dissociation constant of the complex hCC-Cyst10/28.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulina Czaplewska.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human participation

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: J. D. Wade.

The work was performed at the University of Gdansk.

The contribution of I. Behrendt and M. Prądzińska is equal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 620 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behrendt, I., Prądzińska, M., Spodzieja, M. et al. Epitope location for two monoclonal antibodies against human cystatin C, representing opposite aggregation inhibitory properties. Amino Acids 48, 1717–1729 (2016). https://doi.org/10.1007/s00726-016-2242-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-016-2242-z

Keywords

Navigation