Skip to main content
Log in

Impact of ambient and supplemental ultraviolet-B stress on kidney bean plants: an insight into oxidative stress management

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

In the present study, the response of kidney bean (Phaseolus vulgaris L. cv. Pusa Komal) plants was evaluated under three different levels of ultraviolet-B (UV-B), i.e., excluded UV-B (eUV-B), ambient UV-B (aUV-B; 5.8 kJ m−2 day−1), and supplemental UV-B (sUV-B; 280–315 nm; ambient + 7.2 kJ m−2 day−1), under near-natural conditions. eUV-B treatment clearly demonstrated that both aUV-B and sUV-B are capable of causing significant changes in the plant’s growth, metabolism, economic yield, genome template stability, total protein, and antioxidative enzyme profiles. The experimental findings showed maximum plant height at eUV-B, but biomass accumulation was minimum. Significant reductions in quantum yield (Fv/Fm) were observed under both aUV-B and sUV-B, as compared to eUV-B. UV-B-absorbing flavonoids increased under higher UV-B exposures with consequent increments in phenylalanine ammonia lyase (PAL) activities. The final yield was significantly higher in plants grown under eUV-B, compared to those under aUV-B and sUV-B. Total protein profile through sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and analysis of isoenzymes, like superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), and glutathione reductase (GR), through native PAGE revealed major changes in the leaf proteome under aUV-B and sUV-B, depicting induction of some major stress-related proteins. The random amplified polymorphic DNA (RAPD) profile of genomic DNA also indicated a significant reduction of genome template stability under UV-B exposure. Thus, it can be inferred that more energy is diverted for inducing protection mechanisms rather than utilizing it for growth under high UV-B level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Agrawal SB, Singh S, Agrawal M (2009) Ultraviolet-B induced changes in gene expression and antioxidants in plants. In: Jacquot JP (ed) Advances in botanical research, vol 3, 52nd edn. Academic, Burlington, pp 46–87

    Google Scholar 

  • Allen DJ, Nogués S, Baker NR (1998) Ozone depletion and increased UV-B radiation: is there a real threat to photosynthesis? J Exp Bot 49:1775–1788

    CAS  Google Scholar 

  • Anderson ME (1996) Glutathione. In: Punchard NA, Kelly FJ (eds) Free radicals: a practical approach. Oxford University Press, Oxford, pp 213–226

    Google Scholar 

  • Antonelli F, Bussotti F, Grifoni D, Grossoni P, Mori B, Tani C, Zipoli G (1998) Oak (Quercus robur L.) seedlings responses to a realistic increase in UV-B radiation under open space conditions. Chemosphere 36:841–845

    Article  CAS  Google Scholar 

  • Ballaré CL, Caldwell MM, Flint SD, Robinson SA, Bornman JF (2011) Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change. Photochem Photobiol Sci 10:226–241

    Article  PubMed  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Ann Biochem 44:276–287

    Article  CAS  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91(2):179–194

    Article  PubMed  CAS  Google Scholar 

  • Bray HG, Thorpe WY (1954) Analysis of phenolic compounds of interest in metabolism. Methods Biochem Anal 1:27–52

    Article  PubMed  CAS  Google Scholar 

  • Britton C, Mehley AC (1955) Assay of catalase and peroxidase. In: Colowick SP, Kalpan NO (eds) Method in enzymology, 2nd edn. Academic, New York, p 764

    Google Scholar 

  • Caldwell MM (1971) Solar ultraviolet radiation and the growth and development of higher plants. In: Giese AC (ed) Photophysiology. Academic, New York, pp 131–171

    Chapter  Google Scholar 

  • Casati P, Zhang X, Burlingame AL, Walbot V (2005) Analysis of leaf proteome after UV-B irradiation in maize lines differing in sensitivity. Mol Cell Proteomics 4:1673–1685

    Article  PubMed  CAS  Google Scholar 

  • Cenkci S, Ciğerci IH, Yildiz M, Őzay C, Bozdağ A, Terzi H (2010) Lead contamination reduces chlorophyll biosynthesis and genome template stability in Brassica rapa L. Environ Exp Bot. doi:10.1016/j.envexpbot.2009.10.001

  • Day TA, Neale PJ (2002) Effects of UV-B radiation on terrestrial and aquatic primary producers. Ann Rev Ecol Syst 33:371–396

    Article  Google Scholar 

  • Demmig-Adams B, Winter K, Winkelmann E, Krüger A, Czygan FC (1989) Photosynthetic characteristics and the ratios of chlorophyll, 0-carotene, and the components of the xanthophyll cycle upon a sudden increase in growth light regime in several plant species. Bot Acta 102:319–325

    Article  CAS  Google Scholar 

  • Duxbury AC, Yentsch CS (1956) Plankton pigment monographs. J Mar Res 15:19–101

    Google Scholar 

  • Feng H, Li S, Xue L, An L, Wang X (2007) The interactive effects of enhanced UV-B radiation and soil drought on spring wheat. South Afr J Bot 73(10):429–434

    Article  Google Scholar 

  • Fridovich I (1974) Superoxide dismutase. Adv Enzymol 4:35–97

    Google Scholar 

  • Frohnmeyer H, Staiger D (2003) Uktraviolet-B radiation mediated responses in plants: balancing damage and protection. Plant Physiol 133(4):1420–1428

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Germ M, Mazej Z, Gaberscik A, Häder DP (2002) The influence of enhanced UV-B radiation on Batrachium trichophyllum and Potamogeton alpinus-aquatic macrophytes with amphibious character. J Photochem Photobiol B Biol 66:37–46

    Article  CAS  Google Scholar 

  • Green AES, Cross KR, Smith LA (1980) Improved analytical characterization of ultraviolet skylight. Photochem Photobiol 31:59–65

    Article  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Hunt R (1982) Plant growth analysis. University Press, Baltimore

    Google Scholar 

  • Jansen MAK, Gaba V, Greenberg BM, Mattoo AK, Edelman M (1996) Low threshold levels of ultraviolet-B in a background of photosynthetically active radiation trigger rapid degradation of the D2 protein of photosystem II. Plant J 9:693–699

    Article  CAS  Google Scholar 

  • Jansen MAK, Hectors K, O’Brien NM, Guisez Y, Potters G (2008) Plant stress and human health: do human consumers benefit from UV-B acclimated crops? A review. Plant Sci 175:449–458

    Article  CAS  Google Scholar 

  • Jenkins GI (2009) Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol 60:407–431

    Article  PubMed  CAS  Google Scholar 

  • Jin YH, Tao DL (2000) PS II photoinhibition and O2 production. Acta Bot Sin 42:10–14

    CAS  Google Scholar 

  • Keller T, Schwager H (1977) Air pollution and ascorbic acid. Eur J For Pathol 7:338–350

    Article  CAS  Google Scholar 

  • Khanuja Suman PS, Shasany AK, Darohar MP, Kumar S (1999) Rapid isolation of DNA from dry and fresh samples of plants producing large amount of secondary metabolites and essential oils. Plant Mol Biochem Res 17:1–7

    Google Scholar 

  • Kriedemann PE, Sands PJ (2010) Growth analysis: a quantitative approach. In: Atwell BJ, Kriedemann PE (eds) Plants in action: Adaptation in nature, performance in cultivation, Macmillan, Melbourne, Edition I, pp 186-222

  • Krizek DT, Britz SJ, Mirecki RM (1998) Inhibitory effects of ambient levels of solar UV-A and UV-B radiation on growth of cv. New Red Fire lettuce. Physiol Plant 103:1–7

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Leasure CD, Tong H, Yuen G, Hou X, Sun X, He ZH (2009) ROOT UV-B SENSITIVE2 acts with ROOT UV-B SENSITIVE1 in a root ultraviolet B-sensing pathway. Plant Physiol 150:1902–1915

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lingakumar K, Kulandaivelu G (1993) Changes induced by ultraviolet-B radiation in vegetative growth, foliar characteristics and photosynthetic activities in Vigna unguiculata. Aus J Plant Physiol 20:299–308

    Article  Google Scholar 

  • Long SP, Humphries S (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Maclachlan S, Zalik S (1963) Plastid structure, chlorophyll concentration and free amino acid composition of a chlorophyll mutant of barley. Can J Bot 41:1053–1062

    Article  CAS  Google Scholar 

  • McKenzie RL, Aucamp PJ, Bais AF, Bjorn LO, Ilyas M, Madronich S (2011) Ozone depletion and climate change: impacts on UV radiation. Photochem. Photobiol Sci 10:182–198

    Article  CAS  Google Scholar 

  • Mirecki RM, Teramura AH (1984) Effects of ultraviolet-B irradiance on soybean. The dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion. Plant Physiol 74:475–480

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nakano Y, Asada K (1987) Purification of ascorbate peroxidase in spinach chloroplast, its inactivation in ascorbate depleted medium and reactivation by monodehydroascorbate radical. Plant Cell Physiol 28:131–140

    CAS  Google Scholar 

  • Neuhoff V, Stamm R, Eibl H (1985) Clear background and highly sensitive protein staining with Coomassie Blue dyes in polyacrylamide gels: a systematic analysis. Electrophoresis 6:427–448

    Article  CAS  Google Scholar 

  • Paul ND, Gwynn-Jones D (2003) Underwater ultraviolet - response. Trends Ecol Evol 18:216–217

    Google Scholar 

  • Pontin MA, Piccoli PN, Francisco R, Bottini R, Martinez-Zapater JM, Lijavetzky D (2010) Transcriptome changes in grapevine (Vitis vinifera L.) cv. Malbec leaves induced by ultraviolet-B radiation. BMC Plant Biol 10:224

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao Subba PV, Tower GHN (1970) L-phenylalanine ammonia-lyase (Ustilago hordei). In: Colowick SP, Kaplan NO (eds) Methods in enzymology. Academic, New York, p 581

    Google Scholar 

  • Roshchina VV, Roshchina VD (2003) Ozone and plant cell. Kluwer, Dordrecht

    Book  Google Scholar 

  • Sahoo A, Sarkar S, Singh RP, Kafatos M, Summers ME (2005) Declining trend of total ozone column over the northern parts of India. Int J Remote Sens 26:3433–3440

    Article  Google Scholar 

  • Searles PS, Caldwell MM, Winter K (1995) The response of five tropical species to solar ultraviolet-B radiation. Am J Bot 82:445–453

    Article  Google Scholar 

  • Sindhu JS, Ravi S, Minocha JL (1984) Peroxidase enzyme patterns in primary trisomics of pearl millet. Theor Appl Genet 68:179–182

    Google Scholar 

  • Singh A, Sarkar A, Singh S, Agrawal SB (2010) Investigation of supplemental ultraviolet-B induced changes in antioxidative defense system and leaf proteome in radish (Raphanus sativus L. cv Truthful) plant: an insight to plant response under high oxidative stress. Protoplasma 245:75–83

    Article  PubMed  CAS  Google Scholar 

  • Smith JI, Burritt DJ, Bannister P (2000) Shoot dry weight, chlorophyll and UV-B-absorbing compounds as indicators of a plant’s sensitivity to UV-B radiation. Ann Bot 86:1057–1063

    Article  CAS  Google Scholar 

  • Tripathi R, Sarkar A, Rai SP, Agrawal SB (2011) Supplemental ultraviolet-B and ozone: impact on antioxidants, proteome and genome of linseed (Linum usitatissimum L. cv. Padmini). Plant Biol 13:93–104

    Article  PubMed  CAS  Google Scholar 

  • Vass I, Sass L, Spetea C, Bakou A, Ghanotakis DF, Petrouleas V (1996) UV-B-induced inhibition of photosystem II electron transport studied by EPR and chlorophyll fluorescence. Impairment of donor and acceptor side components. Biochemistry 35:8964–8973

    Article  PubMed  CAS  Google Scholar 

  • Voisin AS, Salon C, Jeudy C, Warembourg FR (2003) Seasonal patterns of 13C-partitioning between shoots and nodulated roots of N2- or nitrate-fed Pisum sativum L. Ann Bot 91:539–546

    Article  PubMed  CAS  Google Scholar 

  • Warren JM, Bassman JH, Fellman JK, Mattinson DS, Eigenbrode S (2003) Ultraviolet-B radiation alters phenolic salicylate and flavonoid composition of Populus trichocarpa leaves. Tree Physiol 23:527–535

    Article  PubMed  CAS  Google Scholar 

  • Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Woodbury PB, Laurence JA, Hudler GW (1994) Chronic ozone exposure alters the growth of leaves, stems and roots of hybrid Populus. Environ Pollut 85:103–108

    Article  PubMed  CAS  Google Scholar 

  • Zavala J, Botto J (2002) Impact of solar UV-B radiation on seedling emergence, chlorophyll fluorescence, and growth and yield of radish (Raphanus sativus). Funct Plant Biol 29:79–804

    Article  Google Scholar 

  • Zavala JA, Ravetta DA (2002) The effect of solar UV-B radiation on terpenes and biomass production in Grindelia chiloensis (Asteraceae), a woody perennial of Patagonia, Argentina. Plant Ecol 161:185–191

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Head of the Department of Botany and the Co-ordinator of CAS in Botany, Banaras Hindu University, for providing the necessary laboratory and field facilities. The authors are also thankful to the authorities of the Council of Scientific and Industrial Research, New Delhi, for providing financial assistance to SS as RA and AS as SRF.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madhoolika Agrawal.

Additional information

Handling Editor: Bhumi Nath Tripathi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S., Sarkar, A., Agrawal, S. et al. Impact of ambient and supplemental ultraviolet-B stress on kidney bean plants: an insight into oxidative stress management. Protoplasma 251, 1395–1405 (2014). https://doi.org/10.1007/s00709-014-0641-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0641-0

Keywords

Navigation