Skip to main content
Log in

Thermodynamic analysis of solubility data 1: phase diagrams of systems salt hydrate + water

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Solubility equilibria between solid salts, salt hydrates, and water have been analyzed on a thermodynamic basis. Fitting equations with three or four adjustable parameters suffice to describe the temperature dependence of solubility adequately when the latter is expressed in ionic (species) mole fractions. Phase diagrams, temperature versus mole fractions, summarize and deal concisely with equilibrium solubility properties of the systems. Comparison of experimental and estimated ratios of slopes to liquidus curves intersecting at isobaric invariants, such as, for example, eutectic or peritectic points, provides a thermodynamic consistency test.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Eysseltová J, Timofeevna Orlova V (2010) IUPAC-NIST solubility data series, 89. Alkali metal nitrates, part 1: lithium nitrate. J Phys Chem Ref Data 39:033104

    Article  Google Scholar 

  2. Gamsjäger H, Magalhães MCF, Königsberger E, Sawada K, Churagulov BR, Schmidt P, Zeng D (2011) IUPAC-NIST solubility data series, 92. Metal carbonates, part 1: solubility and related thermodynamic quantities of cadmium(II) carbonate in aqueous systems. J Phys Chem Ref Data 40:043104/1-26/

    Article  Google Scholar 

  3. Mioduski T, Gumiński C, Zeng D (2012) IUPAC-NIST solubility data series, 94. Rare earth metal iodides and bromides in water and aqueous systems, part 1: Iodides. J Phys Chem Ref Data 41:013104

    Article  Google Scholar 

  4. Lorimer JW, Cohen-Adad R (2003) Thermodynamics of Solubility. In: Hefter GT, Tomkins RPT (eds) Experimental Determination of Solubilities. John Wiley & Sons, Chichester, UK; sect 3, p 22 and sect 6, p 53

  5. Gamsjäger H, Lorimer JW, Salomon M, Shaw DG, Tomkins RPT (2010) Pure Appl Chem 82:1137 (Tab. 3, Equation 30)

    Google Scholar 

  6. Gamsjäger H, Lorimer JW, Salomon M, Shaw DG, Tomkins RPT (2010) J Phys Chem Ref Data 39:023101 (Tab. 3, Equation 30)

    Article  Google Scholar 

  7. Clarke ECW, Glew DN (1966) Trans Faraday Soc 62:539

    Article  CAS  Google Scholar 

  8. Gumiński C, Voigt H, Zeng D (2011) Monatsh Chem 142:211

    Article  Google Scholar 

  9. Pelton AD (1988) Metal Mater Trans A 19A:819

    Google Scholar 

  10. Gamsjäger H, Lorimer JW, Scharlin P, Shaw DG (2008) Pure Appl Chem 80:233; www.iupac.org/publications/PAC. doi:10.1351/pac200880020233

  11. http://www.maplesoft.com/

  12. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL (1982) The NBS Tables of Chemical Thermodynamic Properties. J Phys Chem Ref Data 11(Suppl):2

    Google Scholar 

  13. Cox JD, Wagman DD, Medvedev VA (1989) CODATA key values for thermodynamics. Hemisphere Publ Corp, New York

    Google Scholar 

  14. Scatchard G, Jones PT, Prentiss SS (1932) J Am Chem Soc 54:290

    Article  Google Scholar 

  15. Washburn EW (ed) (1929) International critical tables of numerical data, physics, chemistry and technology, vol 5. McGraw-Hill, New York p 95–113

  16. Nedeljković L (1968) Z Anorg Allg Chem 357:103

    Article  Google Scholar 

  17. Schürmann E, Nedeljkovic L (1970) Ber Bunsen-Ges Phys Chem 74:462

    Google Scholar 

  18. Guion J, Sauzade JD, Laügt M (1983) Thermochim Acta 67:167

    Article  CAS  Google Scholar 

  19. Sinistri C, Franzosini P (1963) Ric Sci Parte 2 Sez A 3:419

  20. Zeng D, Ming J, Voigt W (2008) J Chem Thermodyn 40:232

    Article  CAS  Google Scholar 

  21. Campbell AN, Bailey RA (1958) Can J Chem 36:18

    Google Scholar 

Download references

Acknowledgments

We are grateful to the Solubility Data group in general and the IUPAC Subcommittee on Solubility and Equilibrium Data in particular for many fruitful discussions before, during, and after the International Symposia on Solubility Phenomena and Related Equilibrium Processes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Gamsjäger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 99 kb)

Appendix

Appendix

The slope ratio for a peritectic point has been given in Eq. (25). Equations for other cases are given here.

Slope ratio at a eutectic point 1 (freezing curve and solubility curve intersect)

$$ \left( {\frac{{\sigma_{{{\text{sln}} /{\text{SrW}}}} }}{{\sigma_{{{\text{sln}} /{\text{ice}}}} }}} \right)_{\text{eut 1}} = - \left( {\frac{ 1- (r + 1 )x}{x}} \right)\left\langle {\frac{{\frac{{\Updelta_{\text{fus}} S_{\text{W}}^{{-}\!\!\!\!\hbox{o}} (T)}}{R} - \ln \left[ {\frac{x}{1 + (\nu - 1)x}} \right] - \frac{\text{d}}{{{\text{d}}T}}[T\ln (f_{\text{W}} )]_{\text{ice}} }}{{\frac{{\Updelta_{\text{sln}} S_{\text{SrW}}^{{-}\!\!\!\!\hbox{o}} (T)}}{R} - \ln \left\{ {\frac{{(\nu_{\pm} x)^{v} (1 - x)^{r} }}{{[1 + (\nu - 1)x]^{v + r} }}} \right\} - \frac{\text{d}}{{{\text{d}}T}}[T\ln (f^{v}_{\pm} f_{\text{W}}^r )]_{\text{SrW}} }}} \right\rangle $$
(35)

When experimental and theoretical slopes neglecting the f terms differ considerably but their ratios agree, the following relationship must hold:

$$ \left( {\frac{{\sigma_{\text{ice/sln}} }}{{\sigma_{\text{sln/SrW}} }}} \right)_{\text{eut 1}} \approx - \frac{{\left[ {\frac{x}{1 - (1 + r)x}} \right]\left\langle {\frac{{\Updelta_{{{\text{sln}} }} S_{\text{SrW}}^{{-}\!\!\!\!\hbox{o}} (T)}}{R} - \ln \left\{ {\frac{{(\nu_{\pm} x)^{v} (1 - x)^{r} }}{{[1 + (\nu - 1)x]^{v + r} }}} \right\}} \right\rangle }}{{\frac{{\Updelta_{\text{fus}} S_{\text{W}}^{{-}\!\!\!\!\hbox{o}} }}{R} - \ln \left[ {\frac{(1 - x)}{1 + (\nu - 1)x}} \right]}} $$
(36)
$$ \left( {\frac{{\sigma_{\text{ice/sln}} }}{{\sigma_{\text{sln/SrW}} }}} \right)_{\text{eut 1}} \approx \frac{{\frac{\text{d}}{{{\text{d}}T}}\left[ {T\ln (f^{v}_{\pm} f_{\text{W}}^{r} )} \right]}}{{\frac{\text{d}}{{{\text{d}}T}}(T\ln f_{\text{W}} )}} $$
(37)

A quite similar result is obtained when the slope ratio \( \frac{{\sigma_{\text{ice/sln}} }}{{\sigma_{\text{sln/SrW}} }} \) is estimated by Eq. (38), the enthalpy version of Eq. (36). Again agreement between the experimental and theoretical slope ratio is much better than between experimental and theoretical individual slopes.

$$ \left( {\frac{{\sigma_{\text{ice/sln}} }}{{\sigma_{\text{sln/SrW}} }}} \right)_{\text{eut 1}} \approx - \frac{{x\Updelta_{\text{sln}} H_{\text{SrW}}^{{-}\!\!\!\!\hbox{o}} }}{{[1 - (r + 1)x]\Updelta_{\text{fus}} H_{\text{W}}^{{-}\!\!\!\!\hbox{o}} }} $$
(38)

Slope ratio at a eutectic point 2 (solubility curves of anhydrous solid and salt hydrate intersect)

In this case the binary compound has a stable melting point, and the intersection occurs on the high mole fraction side of the composition of the binary compound.

$$ \left( {\frac{{\sigma_{{{\text{sln}}/{\text{SrW}}}}}}{{\sigma_{{{\text{sln}}/{\text{S}}}} }}} \right)_{\text{eut 2}} = \left( {\frac{ 1- (r + 1 )x}{1-x}} \right)\left\langle {\frac{{\frac{{\Updelta_{{{\text{sln }}}}S_{\text{S}}^{{-}\!\!\!\!\hbox{o}} (T)}}{R} - \nu \ln \left[ {\frac{(\nu_{\pm} x)}{1 + (\nu - 1)x}} \right] - \frac{\text{d}}{{{\text{d}}T}}[T\ln (f_{\pm})]_{\text{s}} }}{{\frac{{\Updelta_{{{\text{sln}} }} S_{\text{SrW}}^{{-}\!\!\!\!\hbox{o}} (T)}}{R} - \ln \left\{ {\frac{{(\nu_{\pm} x)^{v} (1 - x)^{r} }}{{[1 + (\nu - 1)x]^{v + r} }}} \right\} - \frac{\text{d}}{{{\text{d}}T}}[T\ln (f^{v}_{\pm} f^{r}_{\text{W}} )]_{\text{SrW}} }}} \right\rangle $$
(39)

When experimental and theoretical slopes neglecting the f terms differ considerably but their ratios agree at least approximately, the error is partly compensated by Eqs. (40) and (41), which are analogous to Eqs. (36) and (37):

$$ \left( {\frac{{\sigma_{{{\text{sln}} /{\text{SrW}}}} }}{{\sigma_{{{\text{sln}} /{\text{S}}}} }}} \right)_{\text{eut}} \approx \left( {\frac{ 1- (r + 1 )x}{1-x}} \right)\left\langle {\frac{{\frac{{\Updelta_{{{\text{sln }}}} S_{S}^{{-}\!\!\!\!\hbox{o}} (T)}}{R} - \nu \ln \left[ {\frac{(\nu_{\pm} x)}{1 + (\nu - 1)x}} \right]}}{{\frac{{\Updelta_{{{\text{sln }}}} S_{\text{SrW}}^{{-}\!\!\!\!\hbox{o}} (T)}}{R} - \ln \left\{ {\frac{{(\nu_{\pm} x)^{v} (1 - x)^{r} }}{{[1 + (\nu - 1)x]^{v + r} }}} \right\}}}} \right\rangle $$
(40)
$$ \left( {\frac{{\sigma_{{{\text{sln}} /{\text{SrW}}}} }}{{\sigma_{{{\text{sln}} /{\text{S}}}} }}} \right)_{\text{eut}} \approx \frac{\nu{\frac{\text{d}}{{{\text{d}}T}}[T\ln ({{f_{\pm}}} )]_{\text{S}} }}{{\frac{\text{d}}{{{\text{d}}T}}[T\ln (f^{\nu}_{\pm} f_{\text{W}}^r )]_{\text{SrW}} }} $$
(41)

For the system LiNO3 + H2O Eq. (42), the enthalpy version of Eq. (40) is not applicable, because \( \Updelta_{\text{sln}} H_{\text{S}}^{{-}\!\!\!\!\hbox{o}} \) is exothermic (see Table 1), predicting the same sign for \( \sigma_{\text{sln/SrW}} \) and \( \sigma_{\text{sln/S}} \).

$$ \frac{{\sigma_{\text{sln/SrW}} }}{{\sigma_{\text{sln/S}} }} \approx - \frac{{[1 - (r + 1)x]\Updelta_{\text{sln}} H_{\text{S}}^{{-}\!\!\!\!\hbox{o}} }}{{(1 - x)\Updelta_{\text{sln}} H_{\text{SrW}}^{{-}\!\!\!\!\hbox{o}} }} $$
(42)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamsjäger, H., Lorimer, J.W. & Gamsjäger, E. Thermodynamic analysis of solubility data 1: phase diagrams of systems salt hydrate + water. Monatsh Chem 144, 103–112 (2013). https://doi.org/10.1007/s00706-012-0876-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-012-0876-4

Keywords

Navigation