Skip to main content
Log in

Rapidly converging approximations and regularity theory

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We consider distributions on a closed compact manifold \(M\) as maps on smoothing operators. Thus spaces of maps between \({{\Psi }^{\!-\!\infty }}(M)\) and \(\mathcal{C ^{\infty }}(M)\) are considered as generalized functions. For any collection of regularizing processes we produce various algebras of generalized functions and equivariant embeddings of distributions into such algebras. The regularity for such generalized functions is provided in terms of a certain tameness of maps between graded Frechét spaces. This also recovers the singularity behaviour of distributions (singular support/wavefront sets) in terms of certain subalgebras of the algebra of generalized functions. This notion of regularity is compared with the regularity in Colombeau algebras in the \(\mathcal{G }^{\infty }\) sense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A map \(f:A\rightarrow B\) that respects equivalence relations, that is \(x\sim y\in A\Rightarrow f(x)\sim f(y)\in B\) induces a map on the quotients which we refer to by the same letter by abuse of notation and say \(f\) descends to \(A/\!\sim \rightarrow B/\!\sim \).

  2. As already noted in the Sect. 2, we assume a smooth dependence on \(\varepsilon \) throughout this paper.

  3. By action of a group \(G\) on a set \(S\) is always meant a group homomorphism \(\rho :G\rightarrow Auto(S)\) and as usual convention we often write \(g\cdot s:=\rho (g)(s)\). All actions considered in this paper are left actions, that is for \(g,h\in G\) we have \((g\cdot h)\cdot s=g\cdot (h\cdot s)\).

  4. Throughout this paper the sign of \(\Delta \) is chosen so as to make it a positive operator.

References

  1. Aragona, J., Biagioni, H.A.: Intrinsic definition of the Colombeau algebra of generalized functions. Anal. Math. 17(2), 75–132 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Colombeau, J.F.: New Generalized Functions and Multiplication of Distributions. North Holland, Amsterdam (1984)

    MATH  Google Scholar 

  3. de Roever, J.W., Damsma, M.: Colombeau algebras on a \(C^\infty \)-manifold. Indag. Math. (N.S.) 2(3), 341–358 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dave, S.: Geometrical embeddings of distributions into algebras of generalized functions. Mathematische Nachrichten 283, 1575–1588 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Garetto, C.: Topological structures in Colombeau algebras: topological \(\tilde{\mathbb{C}}\)-modules and duality theory. Acta Appl. Math. 88, 81–123 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Garetto, C., Hörmann, G.: Microlocal analysis of generalized functions: pseudodifferential techniques and propagation of singularities. Proc. Edinb. Math. Soc (2) 48(3), 603–629 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gröchenig, K.: Foundations of time-frequency analysis. Applied and Numerical Harmonic Analysis Birkhäuser Boston Inc, Boston (2001)

    MATH  Google Scholar 

  8. Grosser, M., Kunzinger, M., Oberguggenberger, M., Steinbauer, R.: Geometric Theory of Generalized Functions, vol. 537 of Mathematics and its Applications 537. Kluwer Academic Publishers, Dordrecht (2001)

    Book  Google Scholar 

  9. Grosser, M., Kunzinger, M., Vickers, J.: A global theory of algebras of generalized functions. Adv. Math. 166(1), 50–72 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guillemin, V.: A new proof of Weyl’s formula on the asymptotic distribution of eigenvalues. Adv. Math. 55, 131–160 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hamilton, R.: The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. (N.S.) 7(1), 65–222 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hörmann, G., Oberguggenberger, M.: Elliptic regularity and solvability for partial differential equations with Colombeau coefficients. Electron. J. Differ. Equ. 2004, 1–30 (2004)

  13. Hörmann, G., Oberguggenberger, M., Pilipović, S.: Microlocal hypoellipticity of linear partial differential operators with generalized functions as coefficients. Trans. Amer. Math. Soc. 358(8), 3363–3383 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kriegl, A., Michor, P.: The convenient setting of global analysis, Mathematical Surveys and Monographs 53. American Mathematical Society, Providence (1997)

    Google Scholar 

  15. Kunzinger, M., Steinbauer, R., Vickers, J.: Sheaves of nonlinear generalized functions and manifold-valued distributions. Trans. Amer. Math. Soc. 361, 5177–5192 (2009)

    Google Scholar 

  16. Oberguggenberger, M.: Multiplication of Distributions and Applications to Partial Differential Equations, Pitman Research Notes in Mathematics vol. 259. Longman, Harlow (1992)

    Google Scholar 

  17. Nedeljkov, M., Pilipović, S., Scarpalezos, D.: The linear theory of Colombeau generalized functions, Pitman Research Notes in Mathematics Series 385. Longman, Harlow (1998)

    Google Scholar 

  18. Scarpalézos, D.: Some remarks on functoriality of Colombeau’s construction; topological and microlocal aspects and applications, Integral Transform. Spec. Funct. 6, 295–307 (1998). Generalized functions–linear and nonlinear problems (Novi Sad, 1996)

    Article  MATH  Google Scholar 

  19. Schwartz, L.: Sur l’impossibilit de la multiplication des distributions. C. R. Acad. Sci. Paris 239, 847–848 (1954)

    MathSciNet  MATH  Google Scholar 

  20. Wong, M.: Weyl transforms, heat kernels, Green functions and Riemann zeta functions on compact Lie groups, Modern trends in pseudo-differential operators. Oper. Theory Adv. Appl. 172, 67–85 (2007)

    Article  Google Scholar 

  21. Weyl, H.: Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann. 71(4), 441–479 (1912)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

I would like to thank Michael Kunzinger for his encouragement and support with this work. I am very grateful to the referee for many valuable comments and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shantanu Dave.

Additional information

Communicated by A. Constantin.

Supported by FWF grants Y237-N13 and P20525 of the Austrian Science Fund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dave, S. Rapidly converging approximations and regularity theory. Monatsh Math 170, 121–145 (2013). https://doi.org/10.1007/s00605-013-0480-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-013-0480-7

Keywords

Mathematics Subject Classification

Navigation