Skip to main content
Log in

Anticarcinogenic activity of kalpaamruthaa, a modified Siddha preparation, against aflatoxin–B1-induced hepatocellular carcinoma in rats

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

To investigate the potential anticancer effect of kalpaamrutha (KA), a modified Siddha preparation, against aflatoxin–B1(AFB1)-induced hepatocellular carcinoma (HCC) in rats, KA (200 mg/kg body weight/day) was administered to AFB1-induced (2 mg/kg body weight i.p.) HCC rats, orally for 28 days. At the end of the experimental period, changes in body weight were recorded; the levels of alpha-fetoprotein and total protein was estimated in the serum; activities of marker enzymes were assayed in serum and total protein; DNA and RNA contents were estimated in liver tissue; activities of glycolytic enzymes, mitochondrial Krebs cycle enzymes, and respiratory chain enzymes were assayed in liver tissue of control and experimental rats. Further histopathological examination of the liver sections was carried out to support the anticancer effect of KA against AFB1-induced HCC. Administration of KA overall increase in glycolytic enzymes with a subsequent reduction in gluconeogenic enzymes, mitochondrial Krebs cycle enzymes, and respiratory chain enzymes was observed in HCC-induced rats. These altered enzyme activities were effectively counteracted by supplementation with KA and also prevented the body weight loss by enhancing the host energy metabolism. Histological studies supported the biochemical findings. The results of the present study reveal that the drug KA has potential anticancer effect against AFB1-induced HCC rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Wahhab MA, Nada SA, Khalik FA (2002) Physiological and toxicological responses in rats fed aflatoxin contaminated diet with or without sorbent materials. Anim Feed Sci Technol 97:209–219

    Article  CAS  Google Scholar 

  • Almaraz-Abarca N, Campos MG, Avila-Reyes JA, Naranjo-Jimenez N, Herrera-Corral J, Gonzalez-Valdez LS (2007) Antioxidant activity of polyphenolic extract of monofloral honeybee-collected pollen from mesquite (Prosopisjuliflora, Leguminosae). J Food Compos Anal 20:119–124

    Article  CAS  Google Scholar 

  • Angusbhakorn S, Get NP, Miyamoto M, Bharmarpravti N (1990) A single dose response effect of aflatoxin B1 on rapid liver cancer induction in two strains of rats. Int J Cancer 46:664–668

    Article  Google Scholar 

  • Arora KK, Pedersen PL (1988) Functional significance of mitochondrial bound hexokinase in tumour cell metabolism. J Biol Chem 263:17422–17428

    PubMed  CAS  Google Scholar 

  • Arul B, Kothai R, Christina AJ (2004) Hypoglycemic and antihyperglycemic effect of Semecarpus anacardium Linn in normal and streptozotocin induced diabetic rats. Methods Find Exp Clin Pharmacol 26:759–762

    Article  PubMed  CAS  Google Scholar 

  • Arulkumaran S, Ramprasath VR, Shanthi P (2006) Restorative effect of kalpaamruthaa, an indigenous preparation, on oxidative damage in mammary gland mitochondrial fraction in experimental mammary carcinoma. Mol Cell Biochem 291:77–82

    Article  PubMed  CAS  Google Scholar 

  • Bannasch P, Mayer D, Hacker HJ (1980) Hepatocellular glycogenesis and hepatocarcinogenesis. Biochim Biophys Acta 605:217–245

    PubMed  CAS  Google Scholar 

  • Barber MD, Powell JJ, Lynch SF, Fearon KCH, Ross JA (2000) A polymorphism of the interleukin-1β gene influences survival in pancreatic cancer. Br J Cancer 83:1443–1447

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bennett JW, Klich MA (2003) Mycotoxins. Clin Microbiol Rev 16:497–516

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bergmeyer HU (1974). Methods of Enzymatic Analysis, Second Edition, 1: 430

  • Bindoli A (1988) Lipid peroxidation in mitochondria. Free Rad Biol Med 5:247–261

    Article  PubMed  CAS  Google Scholar 

  • Board M, Human S, Newsholme EA (1990) Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and carboxylic acid cycle in normal, neoplastic and suppressed cells. Biochem J 265:503–509

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bondy GS, Armstrong CL, Curran IA, Baker MG, Mehta R (2000) Retrospective evaluation of serum ornithine carbamyl transferase activity as an index of hepatotoxicity in toxicological studies with rats. Toxicol Lett 144:163–171

    Article  Google Scholar 

  • Burton K (1956) A study of the conditions and mechanisms of diphenylamine reaction for colorimetric estimation of deoxyribonucleic acid. J Biochem 62:315–323

    CAS  Google Scholar 

  • Campbell DM, King EJ (1962) Serum phosphates and glycolytic enzymes in cancer of the breast. Biochem J 82:23–28

    Google Scholar 

  • Campos MG, Mitchel K, Cunha A, Markham K (1997) A systematic approach to the characterization of bee pollens via their flavonoid/phenolic profiles. Phytochem Anal 8:181–185

    Article  CAS  Google Scholar 

  • Chattopadhyaya MK, Khare RL (1969) Isolation of anacardic acid from Semecarpus anacardium Linn. and study of its anthelmintic activity. Ind J Pharm 31:104–105

    CAS  Google Scholar 

  • Coulombe RA Jr (1993) Biological action of mycotoxins. J Dairy Sci 76:880–891

    Article  PubMed  CAS  Google Scholar 

  • Darrow RA, Colowick SP (1962). Methods Enzymol 226–227

  • Doll R (1990) Symposium on diet and cancer. Proc Nutr Soc 49:119–131

    Article  PubMed  CAS  Google Scholar 

  • Ellis CN, Burnette JJ, Sedlack R, Dyas C, Blackmore WS (1991) Prognostic applications of DNA analysis in solid malignant lesions in humans. Surgery 173:329–342

    CAS  Google Scholar 

  • Fink-Gremmels J (1999) Mycotoxins: their implications for human and animal health. Vet. Q., 21: hens: effects on egg quality, aflatoxins B and M residues in eggs and aflatoxin 1 1B1 levels in liver. Poult Sci 84:825–832

    Google Scholar 

  • Gancedo JM, Gancedo C (1971) Fructose 1,6-disphosphatase, phosphofructokinase and glucose-6-phosphate dehydrogenase from fermenting and non-fermenting yeasts. Arch Microbiol 76:132–138

    CAS  Google Scholar 

  • Haseena Banu H, Kaladevi S, Shanthi P, Sachdanandam P (2011) Anti-diabetic effect of Semecarpus anacardium Linn nut milk extract in a high fat diet STZ-induced type 2 diabetic rat model. Comp Clin Pathol 1305–1315

  • Heidelberger C (1975) Chemical carcinogenesis. Ann Rev Biochem 44:79–91

    Article  PubMed  CAS  Google Scholar 

  • Hennipman A, Van oirschot BA, Smits J, Rijksen G, Stacil GEJ (1988) Heterogenecity of glycolytic enzyme activity and isomerase composition of pyruvate kinase in breast cancer. Tumour Biol 9:178–189

    Article  PubMed  CAS  Google Scholar 

  • Hertzfeld A, Greengard O (1980) Enzyme activities in human fetal and neoplastic tissues. Cancer 46:2047–2054

    Article  Google Scholar 

  • Horrocks JE, Ward J, King J (1963) A routine method for the determination of phosphoglucoisomerase activity in body fluid. J Clin Pathol 16(3):248–251

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huang YL, Sheer JY, Lin TH (1999) Association between oxidative stress and changes of trace elements in patients with breast cancer. Clin Biochem 32:131–136

    Article  PubMed  CAS  Google Scholar 

  • Indap MA, Ambaye RY, Gokhale SV (1986) Potentiation of activity of anticancer drugs by acetylated oil of Semecarpus anacardium Linn. F. in experimental tumours. Indian Drugs 23:447

    CAS  Google Scholar 

  • Jeena KJ, Joy KL, Kuttan R (1999) Effect of Emblica officinalis, Phyllanthus amarus and Picrorhiza kurroa on N-nitrosodiethylamine induced hepatocarcinogenesis. Cancer Lett 136:11–16

    Article  PubMed  CAS  Google Scholar 

  • Johnson D, Lardy H (1967) Isolation of liver and kidney mitochondria. Meth Enzymol 10:94–96

    Article  CAS  Google Scholar 

  • Jose JK, Kuttan G, Kutan R (2001) Antitumour activity of Emblica officinalis. J Ethnopharmacol 75:65–69

    Article  PubMed  CAS  Google Scholar 

  • Kamali M, Manhouri H (1969) A modified orcinol reaction for RNA determination. Clin Chem 15:390–392

    PubMed  CAS  Google Scholar 

  • Kamdem L, Siest G, Magdalou J (1982) Differential toxicity of aflotoxin B1 in male and female rats relationship with hepatic drug metabolizing enzymes. Biochem Pharmacol 31:3057–3062

    Article  PubMed  CAS  Google Scholar 

  • King J (1965a) The hydrolases—acid and alkaline phosphatase. In: Van D (ed) Practical clinical enzymology. Nostrand Company Ltd, London, pp 191–208

    Google Scholar 

  • King J (1965b) The transferases—alanine and aspartate transaminases. In: Van D (ed) Practical clinical enzymology. Nostrand Company Ltd, London, pp 121–138

    Google Scholar 

  • Krishnan S, Manavathu EK, Chandrasekar PH (2009) Aspergillus flavus: an emerging non-fumigatus Aspergillus species of significance. Mycoses 52:206–222

    Article  PubMed  CAS  Google Scholar 

  • Llovet JM, Bruix J (2008) “Novel advancements in the management of hepatocellular carcinoma in 2008. J Hepatol 48:20–37

    Article  Google Scholar 

  • Luly P, Barnabei O, Tria E (1972) Hormonal control in vitro of plasma membrane bound Na+/K+ ATPase of liver. Biochem Biophys Acta 282:447–452

    Article  PubMed  CAS  Google Scholar 

  • MacNab GM, Urbanowicz JM, Geddes EW (1976) Br J Cancer 33:544–546

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maianski NA, Geissler J, Srinivasula SM, Alnemri ES, Roos D, Kuijpers TW (2004) Functional characterization of mitochondria in neutrophils: a role restricted to apoptosis. Cell Death Differ 11:143–153

    Article  PubMed  CAS  Google Scholar 

  • Mehler AH, Kornberg A, Grisolia S, Ochoa S (1948) The enzymatic mechanisms of oxidation reduction between malate or isocitrate and pyruvate. J BiolChem 174:961–977

    CAS  Google Scholar 

  • Minakami S, Ringer RL, Singer TP (1962) Studies on respiratory chain linked dihydrodiphosphopyridine nucleotide dehydrogenase. J Biol Chem 237:569–576

    PubMed  CAS  Google Scholar 

  • Murthy SSN (1984) Phytochem 3:925–927

    Article  Google Scholar 

  • Mythilypriya R, Shanthi P, Sachdanandam P (2007a) Restorative and synergistic efficacy of kalpaamruthaa, a modified Siddha preparation, on an altered antioxidant status in adjuvant induced arthritic rat model. Chem Biol Interact 168:193–202

    Article  PubMed  CAS  Google Scholar 

  • Mythilypriya R, Shanthi P, Sachdanandam P (2007b) Analgesic, antipyretic and ulcerogenic properties of an indigenous formulation—kalpaamruthaa. Phytother Res 21:574–578

    Article  PubMed  Google Scholar 

  • Mythilypriya R, Shanthi P, Sachdanandam P (2007c) Oral acute and subacute toxicity studies with kalpaamruthaa, a modified indigenous preparation, on rats. J Health Sci 54:351–358

    Article  Google Scholar 

  • Mythilypriya R, Shanthi P, Sachdanandam P (2008) Synergistic effect of kalpaamruthaa on antiarthritic and antiinflammatory properties—its mechanism of action. Inflammation 3:16

    Google Scholar 

  • Nair PKR, Melnick SJ, Wnuk SF, Rapp M, Escalon E, Ramachandran C (2009) Isolation and characterization of an anticancer catechol compound from Semecarpus anacardium. J Ethnopharmacol 3:450–456

    Article  Google Scholar 

  • Nordlie RC, Arion WJ (1966) Methods Enzymol 9:619–625

    Article  CAS  Google Scholar 

  • Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA Cancer J Clin 55(2):74–108

    Article  PubMed  Google Scholar 

  • Parry DM, Pederson PL (1983) Intracellular localization and properties of particulate hexokinase in the Novikoff ascites tumor; evidence for an outer mitochondrial membrane location. J Biol Chem 258:10904–10912

    PubMed  CAS  Google Scholar 

  • Pederson PL (1978) Tumor mitochondria and the bioenergetics of cancer cells. Prog Exp Tumor Res 22:190–274

    Google Scholar 

  • Premalatha B (2000) Semecarpus anacardium Linn. nuts—a boon in alternative medicine. Indian J Exp Biol 38:1177–1182

    PubMed  CAS  Google Scholar 

  • Raghu V, Kalpana P, Srinivasan K (2007) Comparison of ascorbic acid content of Emblica officinalis fruits determined by different analytical methods. J Food Compos Anal 20:529–533

    Article  CAS  Google Scholar 

  • Reed LJ, Mukherjee BB (1969) α-Ketoglutarate dehydrogenase complex from Escherichia coli. Methods Enzymol 13:55–61

    Article  CAS  Google Scholar 

  • Rice-Evans C, Burdon R (1993) Free radical-lipid interactions and their pathological consequences. Prog Lipid Res 32:71–110

    Article  PubMed  CAS  Google Scholar 

  • Sabu MC, Kuttan R (2002) Anti-diabetic activity of medicinal plants and its relationship with their antioxidant property. J Ethnopharmacol 81:155–160

    Article  PubMed  CAS  Google Scholar 

  • Scartezzini P, Speroni E (2000) Review on some plants of Indian traditional medicine with antioxidant activity. J Ethnopharmacol 71:23–43

    Article  PubMed  CAS  Google Scholar 

  • Scartezzini P, Antognoni F, Raggi MA, Poli F, Sabbioni C (2006) Vitamin C content and antioxidant activity of the fruit and of the Ayurvedic preparation of Emblica officinalis Gaertn. J Ethnopharmacol 104:113–118

    Article  PubMed  CAS  Google Scholar 

  • Selvam C, Jachak SM (2004) A cyclooxygenase (COX) inhibitory biflavonoid from the seeds of Semecarpus anacardium. J Ethnopharmacol 95:209–212

    Article  PubMed  CAS  Google Scholar 

  • Slater EC, Bonner WD (1952) Effect fluoride on succinate oxidase system. Biochem J 52:185–196

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tessitore L, Bonelli G, Baccino FM (1987) Early development of protein metabolic perturbations in the liver and skeletal muscle of tumor bearing rats. Biochem J 241:153–159

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tessitore L, Costelli P, Baccino FM (1994) Pharmacological interference with tissue hypercatabolism in tumor-bearing rats. Biochem J 299:71–78

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tong M, Blatt L, Kao V (2001) Surveillance for hepatocellular carcinoma in patients with chronic viral hepatitis in the United States of America. J Gastroenterol Hepatol 16:553–559

    Article  PubMed  CAS  Google Scholar 

  • Towner RA, Qian SY, Kadiiska MB, Mason RP (2003) Invivo identification of aflatoxin-induced free radicals in rat bile. Free Radic Biol Med 35:1330

    Article  PubMed  CAS  Google Scholar 

  • Umarani M, Shanthi P, Sachdanandam P (2008) Protective effect of kalpaamruthaa in combating the oxidative stress posed by aflatoxinB1-induced hepatocellular carcinoma with special reference to favonoid structure–activity relationship. Liver Int 14:78–82

    Google Scholar 

  • Veena K, Shanthi P, Sachdanandam P (2006) Anticancer effect of kalpaamruthaa on mammary carcinoma in rats with reference to glycoprotein components, lysosomal and marker enzymes. Biol Pharm Bull 29:565–569

    Article  PubMed  CAS  Google Scholar 

  • Verma S, Singh SP (2008) Current and future status of herbal medicines. Vet World 1:347–350

    Article  Google Scholar 

  • Wallace DC, Fan W, Procaccio V (2010) Mitochondrial energetics and therapeutics. Annu Rev Pathol 5:297–348

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Weber G, Cantero A (1960) Comparison of carbohydrate metabolism in normal and neoplastic liver. Enzyme studies. Acta Union Int Contra Cancrum 16:1002

    CAS  Google Scholar 

  • Weber G, Morris HP (1961) Comparative biochemistry of hepatomas carbohydrate enzymes in Morris hepatoma 5123. Cancer Res 21:933–937

    PubMed  CAS  Google Scholar 

  • Weber G, Morris HP (1963) Comparative biochemistry of hepatomas. III. Carbohydrate enzymes in liver tumors of different growth rates. Cancer Res 987–994

  • Wu W, Yao DF, Yuan YM, Fan JW, Lu XF, Li XH, Qiu LW, Zong L, Wu XH (2006) Combined serum hepatoma-specific alpha-fetoprotein and circulating alpha-fetoprotein mRNA in diagnosis of hepatocellular carcinoma. Hepatobiliary Panctreat Dis Int 5:538–544

    CAS  Google Scholar 

Download references

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panchanatham Sachdanandam.

Additional information

Highlights

To find out the effect of kalpaamruthaa on total protein in serum and liver,

To find out the efficacy of kalpaamruthaa activities of glycolytic and gluconeogenic enzyme in liver,

Role of kalpaamruthaa on activities of enzymes involved in mitochondrial Krebs cycle and respiratory chain

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanchana, K., Shanthi, P. & Sachdanandam, P. Anticarcinogenic activity of kalpaamruthaa, a modified Siddha preparation, against aflatoxin–B1-induced hepatocellular carcinoma in rats. Comp Clin Pathol 23, 1283–1292 (2014). https://doi.org/10.1007/s00580-013-1776-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-013-1776-7

Keywords

Navigation