Skip to main content
Log in

Feedforward stability control of active slider in sub-nanometer spacing regime

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper proposes a feedforward control scheme to control the bouncing instability of active-head air-bearing slider. The principle of the scheme for stability control of bouncing slider is discussed. Simulation results show that the control scheme is proved to be able to substantially reduce the bouncing vibrations. Compared to other controllers, the proposed scheme is less computationally intensive and is thus suitable for real time implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Badertscher J, Cunefare KA, Aldo A (2007) Ferri braking impact of normal dither signals. ASME 129:17

    Google Scholar 

  • Boettcher U, Li H, de Callafon RA, Talke FE (2011) Dynamic flying height adjustment in hard disk drives through feed forward control. IEEE Trans Magn 47(1823):1829

    Google Scholar 

  • Canchi SV, Bogy D (2010) Slider dynamics in the lubricant-contact regime. IEEE Trans Magn 46(3):764–769

    Article  Google Scholar 

  • Canchi SV, Bogy DB, Wang R-H, Murthy AN (2012) Parametric investigations at the head-disk interface of thermal fly-height control sliders in contact. Adv Tribol 2012 (Article ID 303071)

  • Cuberes T (2007) Nanoscale friction and ultrasonics. In: Meyer E (ed) Fundamentals of friction and wear. Springer, Berlin

    Google Scholar 

  • Dinelli F, Biswas SK, Briggs GAD, Kolosov OV (1997) Ultrasound induced lubricity in microscopic contact. Appl Phys Lett 71(9):1177–1181

    Google Scholar 

  • Feeny BF, Moon FC (2000) Quenching stick-slip chaos with dither. J Sound Vib 237:173–180

    Article  Google Scholar 

  • Gelb A, Velde WEV (1968) Multiple-input describing functions and nonlinear system design McGraw-Hill, New York

  • Gelb A, Warren RS (1973) Direct statistical analysis of nonlinear systems: cADET. AIAA J 11(5):689–694

    Article  Google Scholar 

  • Hesjedal T, Behme G (2002) The origin of ultrasound-induced friction reduction in microscopic mechanical contacts. IEEE Trans Ultrason Ferroelectr Freq Control 49(3):356–364

    Article  Google Scholar 

  • Hua W, Liu B, Yu S, Zhou W (2009) Nanoscale roughness contact in a slider–disk interface. Nanotechnology 20:285710

    Article  Google Scholar 

  • Kaajakari’ V, Kana S-H, Lifla L-J, Lala A, Rodgers S (2000) Ultrasonic actuation for MEMS dormancy-related stiction reduction, MEMS reliability for critical applications. In: Lawton RA (ed) Proceedings of SPIE, vol 4180

  • Kiely JD, Hsia YT (2008) Slider dynamic motion during writer-induced head-disk contact. Microsyst Technol 14(3):403–409

    Article  Google Scholar 

  • Knigge B, Talke FE (2001) Dynamics of transient events at the head/disk interface. Tribol Int 34(7):453–460

    Article  Google Scholar 

  • Lee S, Meerkov SM (1991) Generalized dither. Int J Control 53(4):741–747

    Article  MathSciNet  Google Scholar 

  • Mate CM, Arnett PC, Baumgart P et al (2004) Dynamics of contacting head-disk interfaces. IEEE Trans Magn 40(4):3156–3158

    Article  Google Scholar 

  • Morgul O (1999) On the control of chaotic systems in Lurie form by using dither. IEEE Trans Circuits Syst I 46:1301–1305

    Article  Google Scholar 

  • Naniwa I, Sato K, Nakamura S, Sato K (2009) Active-head slider with piezoelectric actuator using shear-mode deformation. Microsyst Technol 15:1619–1627

    Article  Google Scholar 

  • Ono K (2009) Contact characteristics of spherical head and magnetic disk considering van der Waals forces and elastic deformation of contacting asperities and mean height surfaces. IEEE Trans Magn 45(10):3612–3615

    Article  Google Scholar 

  • Salas PA, Boettcher U, Talke FE (2012) Time dependent simulation of active flying height control of TFC sliders. Microsyst Technol 18:1661–1667

    Article  Google Scholar 

  • Sheng G (2011) Sensing and identification of nonlinear dynamics of slider with clearance in sub-5 nanometer regime. Adv Tribol 2011 (Article ID 282839)

  • Tani H, Kanda M, Kubota M, Tagawa N (2009) Study of slider-defect interaction at ultralow flying height by dynamic flying height control. J Appl Phys 105:07B703

    Article  Google Scholar 

  • Thomsen JJ (1999) Using fast vibrations to quench friction-induced oscillations. J Sound Vib 228:1079–1102

    Article  Google Scholar 

  • Vakis AI, Lee S-C, Polycarpou AA (2009) Dynamic head-disk interface instabilities with friction for light contact (surfing) recording. IEEE Trans Magn 45(11):486–488

    Article  Google Scholar 

  • Xu J, Kohira H, Tanaka H, Saegusa S (2005) Partial-contact head-disk interface approach for high-density recording. IEEE Trans Magn 41(10):3031–3033

    Article  Google Scholar 

  • Xu JF, Kiely JD, Hsia Y-T, Talke F (2009) Effect of thermal pole tip protrusion and disk roughness on slider disk contacts. Microsyst Technol 15:687–693

    Article  Google Scholar 

  • Yu SK, Liu B, Ng KK, Hua W, Zhou WD, Myo KS (2011) Nonlinear dynamics of thermal flying height control sliders at touch-down. IEEE Trans magn 47(7):1798–1804

    Article  Google Scholar 

  • Yu SK, Ng KK, Hua W, Zhou WD, Liu B (2012) Dynamics of air bearing-slider-suspension system at surfing state. APMRC (Oct 31 2012–Nov 2)

  • Zheng J, Bogy DB (2012) Numerical simulation of touchdown dynamics of thermal flying-height control sliders. IEEE Trans Magn 48(9):2415–2420

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, G., Huang, L. & Chang, JY. Feedforward stability control of active slider in sub-nanometer spacing regime. Microsyst Technol 19, 1351–1355 (2013). https://doi.org/10.1007/s00542-013-1819-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-1819-7

Keywords

Navigation