Skip to main content
Log in

Timing, styles, and kinematics of Cambro–Ordovician extension in the Teplá–Barrandian Unit, Bohemian Massif, and its bearing on the opening of the Rheic Ocean

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

This paper describes late Cambrian dikes and Early Ordovician volcano-sedimentary successions of the Prague Basin, Bohemian Massif, to discuss the timing and kinematics of breakup of the northern margin of Gondwana. Andesitic dikes indicate minor E–W crustal extension in the late Cambrian, whereas the Tremadocian to Dapingian lithofacies distribution and linear array of depocenters suggest opening of this Rheic Ocean rift-related basin during NW–SE pure shear-dominated extension. This kinematic change was associated with the onset of basic submarine volcanism, presumably resulting from decompression mantle melting as the amount of extension increased. We conclude from these inferences and from a comparison with other Avalonian–Cadomian terranes that the rifting along the northern Gondwana margin was a two-stage process involving one major pulse of terrane detachment in the early Cambrian and one in the Early Ordovician. While the geodynamic cause for the former phase remains unclear, but still may include effects of Cadomian subduction (roll-back, slab break-off), isostatic rebound, or mantle plume, the incipient stage of the latter phase may have been triggered by the onset of subduction of the Iapetus Ocean at around 510 Ma, followed by advanced extension broadly coeval (Tremadocian to Darriwilian) in large portions of the Avalonian–Cadomian belt. Unequal amounts of extension resulted in the separation and drift of some terranes, while other portions of the belt remained adjacent to Gondwana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arenas R, Martínez Catalán JR, Sánchez Martínez S, Fernández-Suárez J, Andonaegui P, Pearce JA, Corfu F (2007) The Vila de Cruces ophiolite: a remnant of the early Rheic Ocean in the Variscan suture of Galicia (northwest Iberian Massif). J Geol 115:129–148

    Article  Google Scholar 

  • Babuška V, Plomerová J, Vecsey L (2008) Mantle fabric of western Bohemian Massif (central Europe) constrained by 3D seismic P and S anisotropy. Tectonophysics 462:149–163

    Article  Google Scholar 

  • Babuška V, Fiala J, Plomerová J (2010) Bottom to top lithosphere structure and evolution of western Eger Rift (Central Europe). Int J Earth Sci 99:891–907

    Article  Google Scholar 

  • Belka Z, Ahrendt H, Franke W, Wemmer K (2000) The Baltica–Gondwana suture in central Europe: evidence from K–Ar ages of detrital muscovites and biogeographical data. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt, vol 179. Geological Society, London, Special Publications, pp 87–102

  • Belka Z, Valverde-Vaquero P, Dörr W, Ahrendt H, Wemmer K, Franke W, Schäfer J (2002) Accretion of first Gondwana-derived terranes at the margin of Baltica. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe, vol 201. Geological Society, London, Special Publications, pp 19–36

  • Borradaile GJ, Jackson M (2004) Anisotropy of magnetic susceptibility (AMS): magnetic petrofabrics of deformed rocks. In: Martín-Hernández F, Lüneburg CM, Auborg C, Jackson M (eds) Magnetic fabric: methods and application, vol 238. Geological Society, London, Special Publications, pp 299–360

  • Borradaile GJ, Jackson M (2010) Structural geology, petrofabrics and magnetic fabrics (AMS, AARM, AIRM). J Struct Geol 32:1519–1551

    Article  Google Scholar 

  • Bouchez JL (1997) Granite is never isotropic: an introduction to AMS studies of granitic rocks. In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Kluwer Academic Publishers, Dordrecht, pp 95–112

    Google Scholar 

  • Cañón-Tapia E (2004) Anisotropy of magnetic susceptibility of lava flows and dykes: a historical account. In: Martín-Hernández F, Lüneburg CM, Aubourg C, Jackson M (eds) Magnetic fabric: methods and applications, vol 238. Geological Society, London, Special Publications, pp 205–225

  • Cañón-Tapia E, Chávez-Álvarez MJ (2004) Theoretical aspects of particle movement in flowing magma: implication for the anisotropy of magnetic susceptibility of dykes and lava flows. In: Martín-Hernández F, Lüneburg CM, Aubourg C, Jackson M (eds) Magnetic fabric: methods and applications, vol 238. Geological Society, London, Special Publications, pp 227–249

  • Chadima M, Cajz V, Týcová P (2009) On the interpretation of normal and inverse magnetic fabric in dikes: examples from the Eger Graben, NW Bohemian Massif. Tectonophysics 466:47–63

    Article  Google Scholar 

  • Chichorro M, Pereira MF, Díaz-Azpiroz M, Williams IS, Fernández C, Pin C, Silva JB (2008) Cambrian ensialic rift-related magmatism in the Ossa-Morena Zone (Évora-Aracena metamorphic belt, SW Iberian Massif): Sm–Nd isotopes and SHRIMP zircon U–Th–Pb geochronology. Tectonophysics 461:91–113

    Article  Google Scholar 

  • Chlupáč I, Havlíček V, Kříž J, Kukal Z, Štorch P (1998) Palaeozoic of the Barrandian (Cambrian to Devonian). Czech Geological Survey, Prague

    Google Scholar 

  • Cocks LRM (2000) The early Palaeozoic geography of Europe. J Geol Soc Lond 157:1–10

    Article  Google Scholar 

  • Cocks LRM, Fortey RA (1982) Faunal evidence for oceanic separations in the Palaeozoic of Britain. J Geol Soc Lond 139:465–478

    Article  Google Scholar 

  • Cocks LRM, Fortey RA (2009) Avalonia: a long-lived terrane in the Lower Palaeozoic? In: Bassett MG (ed) Early Palaeozoic peri-Gondwana terranes: new insights from tectonics and biogeography, vol 325. Geological Society, London, Special Publications, pp 141–155

  • Cocks LRM, Torsvik TH (2002) Earth geography from 500 to 400 million years ago: a faunal and palaeomagnetic review. J Geol Soc Lond 159:631–644

    Article  Google Scholar 

  • Cocks LRM, McKerrow WS, van Staal CR (1997) The margins of Avalonia. Geol Mag 134:627–636

    Article  Google Scholar 

  • Crowley QG, Floyd PA, Winchester JA, Franke W, Holland JG (2000) Early Palaeozoic rift-related magmatism in Variscan Europe: fragmentation of the Armorican Terrane Assemblage. Terra Nova 12:171–180

    Article  Google Scholar 

  • Dornsiepen UF (1979) Rb–Sr whole rock ages within the European Hercynian, a review. Krystalinikum 14:33–49

    Google Scholar 

  • Dörr W, Fiala J, Vejnar Z, Zulauf G (1998) U–Pb zircon ages and structural development of metagranitoids of the Teplá crystalline complex: evidence for pervasive Cambrian plutonism within the Bohemian massif (Czech Republic). Geol Rundsch 87:135–149

    Article  Google Scholar 

  • Dörr W, Zulauf G, Fiala J, Franke W, Vejnar Z (2002) Neoproterozoic to Early Cambrian history of an active plate margin in the Teplá–Barrandian unit—a correlation of U–Pb isotopic-dilution-TIMS ages (Bohemia, Czech Republic). Tectonophysics 352:65–85

    Article  Google Scholar 

  • Dostal J, Patočka F, Pin C (2001) Middle/Late Cambrian intracontinental rifting in the central West Sudetes, NE Bohemian Massif (Czech Republic): geochemistry and petrogenesis of bimodal volcanic rocks. Geol J 36:1–17

    Article  Google Scholar 

  • Drost K (2008) Sources and geotectonic setting of Late Neoproterozoic–Early Paleozoic volcano-sedimentary successions of the Teplá–Barrandian unit (Bohemian Massif): evidence from petrographical, geochemical, and isotope analyses. Geol Saxon 54:1–165

    Google Scholar 

  • Drost K, Linnemann U, McNaughton N, Fatka O, Kraft P, Gehmlich M, Tonk C, Marek J (2004) New data on the Neoproterozoic–Cambrian geotectonic setting of the Teplá–Barrandian volcano-sedimentary successions: geochemistry, U–Pb zircon ages, and provenance (Bohemian Massif, Czech Republic). Int J Earth Sci 93:742–757

    Article  Google Scholar 

  • Drost K, Romer RL, Linnemann U, Fatka O, Kraft P, Marek J (2007) Nd–Sr–Pb isotopic signatures of Neoproterozoic–Early Paleozoic siliciclastic rocks in response to changing geotectonic regimes: a case study from the Barrandian area (Bohemian Massif, Czech Republic). In: Linnemann U, Nance D, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian–Cadomian active margin to Alleghenian–Variscan collision. Geol Soc Am Spec Paper 423:191–208

  • Drost K, Gerdes A, Jeffries T, Linnemann U, Storey C (2011) Provenance of Neoproterozoic and early Paleozoic siliciclastic rocks of the Teplá–Barrandian unit (Bohemian Massif): evidence from U–Pb detrital zircon ages. Gondwana Res 19:213–231

    Article  Google Scholar 

  • Etxebarria M, Chalot-Prat F, Apraiz A, Eguíluz L (2006) Birth of a volcanic passive margin in Cambrian time: rift paleogeography of the Ossa-Morena Zone, SW Spain. Precambrian Res 147:366–386

    Article  Google Scholar 

  • Fatka O, Mergl M (2009) The ‘microcontinent’ Perunica: status and story 15 years after conception. In: Bassett MG (ed) Early Palaeozoic peri-Gondwana terranes: new insights from tectonics and biogeography, vol 325. Geological Society, London, Special Publications, pp 65–101

  • Fatka O, Micka V, Szabad M, Vokáč V, Vorel T (2011) Nomenclature of Cambrian lithostratigraphy of the Skryje–Týřovice basin. Bull Geosci 86:841–858

    Article  Google Scholar 

  • Fernández RD, Castiñeiras P, Barreiro JG (2012) Age constraints on Lower Paleozoic convection system: magmatic events in the NW Iberian Gondwana margin. Gondwana Res 21:1066–1079

    Article  Google Scholar 

  • Fiala F (1971) Ordovician diabase volcanism and biotite lamprophyres of the Barrandian. J Geol Sci Geol 19:7–97

    Google Scholar 

  • Fiala F (1976) The Silurian doleritic diabases and ultrabasic rocks of the Barrandian area. Krystalinikum 12:47–77

    Google Scholar 

  • Floyd PA, Winchester JA, Seston R, Kryza R, Crowley QG (2000) Review of geochemical variation in Lower Palaeozoic metabasites from the NE Bohemian Massif: intracratonic rifting and plume–ridge interaction. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt, vol 179. Geological Society, London, Special Publications, pp 155–174

  • Franke W (1999) Tectonic and plate tectonic units at the north Gondwana margin: evidence from the Central European Variscides. Abh Geol Bundesanst 54:7–13

    Google Scholar 

  • Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt, vol 179. Geological Society, London, Special Publications, pp 337–354

  • Franke W (2006) The Variscan orogen in Central Europe: construction and collapse. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics, vol 32. Geological Society, London, Memoirs, pp 333–343

  • Furnes H, Kryza R, Muszynski A, Pin C, Garmann LB (1994) Geochemical evidence for progressive, rift-related early Palaeozoic volcanism in the western Sudetes. J Geol Soc Lond 151:91–109

    Article  Google Scholar 

  • Gaggero L, Oggiano G, Funedda A, Buzzi L (2012) Rifting and arc-related early Paleozoic volcanism along the north Gondwana margin: geochemical and geological evidence from Sardinia (Italy). J Geol 120:273–292

    Article  Google Scholar 

  • Gebauer D (1993) Overview of geochronology. In: Bauberger W (ed) Explanations to the geological map of Bavaria 1:25000, sheet 6439 Tännesberg, pp 10–22

  • Geyer G, Elicki O, Fatka O, Zylinska A (2008) Cambrian. In: McCann T (ed) The geology of Central Europe. Precambrian and Palaeozoic, vol 1. Geological Society, London, pp 155–202

  • Hajná J (2012) Tectonic evolution of the central part of the Teplá–Barrandian unit. Dissertation, Charles University in Prague

  • Hajná J, Žák J, Kachlík V, Chadima M (2010) Subduction-driven shortening and differential exhumation in a Cadomian accretionary wedge: the Teplá–Barrandian unit, Bohemian Massif. Precambrian Res 176:27–45

    Article  Google Scholar 

  • Hajná J, Žák J, Kachlík V (2011) Structure and stratigraphy of the Teplá–Barrandian Neoproterozoic, Bohemian Massif: a new plate-tectonic reinterpretation. Gondwana Res 19:495–508

    Article  Google Scholar 

  • Havlíček V (1963) Tectogenetic disruption of the Barrandian Paleozoic. J Geol Sci Geol 1:77–102

    Google Scholar 

  • Havlíček V (1971) Stratigraphy of the Cambrian of Central Bohemia. J Geol Sci Geol 20:7–52

    Google Scholar 

  • Havlíček V (1980) Development of Paleozoic basins in the Bohemian Massif (Cambrian–Lower Carboniferous). J Geol Sci Geol 34:31–65

    Google Scholar 

  • Havlíček V (1981) Development of a linear sedimentary depression exemplified by the Prague Basin (Ordovician–Middle Devonian; Barrandian area—central Bohemia). J Geol Sci Geol 35:7–48

    Google Scholar 

  • Havlíček V, Vaněk J, Fatka O (1994) Perunica microcontinent in the Ordovician (its position within the Mediterranean Province, series division, benthic and pelagic associations). J Geol Sci Geol 46:23–56

    Google Scholar 

  • Hrouda F (1982) Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys Surv 5:37–82

    Article  Google Scholar 

  • Hrouda F, Kahan Š (1991) The magnetic fabric relationship between sedimentary and basement nappes in the High Tatra Mountains, N. Slovakia. J Struct Geol 13:431–442

    Article  Google Scholar 

  • Hrubcová P, Środa P, Špičák A, Guterch A, Grad M, Keller GR, Brueckl E, Thybo H (2005) Crustal and uppermost mantle structure of the Bohemian Massif based on CELEBRATION 2000 data. J Geophys Res 110:B11305

    Article  Google Scholar 

  • Hrubcová P, Środa P, Grad M, Geissler WH, Guterch A, Vozár J, Hegedüs E, Sudetes 2003 Working Group (2010) From the Variscan to the Alpine Orogeny: crustal structure of the Bohemian Massif and the Western Carpathians in the light of the SUDETES 2003 seismic data. Geophys J Int 183:611–633

    Article  Google Scholar 

  • Ilnicki S (2012) Amphibolites from the Szklarska Poreba hornfels belt, West Sudetes, SW Poland: magma genesis and implications for the break-up of Gondwana. Int J Earth Sci 101:1253–1272

    Google Scholar 

  • Kachlík V, Patočka F (1998) Cambrian/Ordovician intracontinental rifting and Devonian closure of the rifting generated basins in the Bohemian Massif realms. Acta Univ Carol Geol 42:433–441

    Google Scholar 

  • Kalvoda J, Bábek O, Fatka O, Leichmann J, Melichar R, Nehyba S, Špaček P (2008) Brunovistulian terrane (Bohemian Massif, Central Europe) from late Proterozoic to late Paleozoic: a review. Int J Earth Sci 97:497–518

    Article  Google Scholar 

  • Kemnitz H, Romer RL, Oncken O (2002) Gondwana break-up and the northern margin of the Saxothuringian belt (Variscides of Central Europe). Int J Earth Sci 91:246–259

    Article  Google Scholar 

  • Keppie JD, Dostal J, Nance RD, Miller BV, Ortega-Rivera A, Lee JKW (2006) Circa 546 Ma plume-related dykes in the ~1 Ga Novillo Gneiss (east-central Mexico): evidence for the initial separation of Avalonia. Precambrian Res 147:342–353

    Article  Google Scholar 

  • Keppie JD, Dostal J, Murphy JB, Nance RD (2008) Synthesis and tectonic interpretation of the westernmost Paleozoic Variscan orogen in southern Mexico: from rifted Rheic margin to active Pacific margin. Tectonophysics 461:277–290

    Article  Google Scholar 

  • Kettner R (1916) On Cambrian igneous rocks in the Barrandian and their relationship to the Krušná hora beds (d ). Trans Czech Acad Caesar Franz Josef Sci Liter Art 25:1–49

    Google Scholar 

  • Kettner R, Kettnerová M (1918) On granodiorite and porphyry intrusions near Rokycany. Trans Czech Acad Caesar Franz Josef Sci Liter Art 26:1–19

    Google Scholar 

  • Klomínský J, Jarchovský T, Rajpoot GS (2010) Atlas of plutonic rocks and orthogneisses in the Bohemian Massif. Radioactive Waste Repository Authority of the Czech Republic, Technical Report TR-01-2010

  • Kodym O (1936) Algonkium. In: Čepek L, Hynie O, Kodym O, Matějka A (eds) Explanations to the geological map of the Czechoslovak Republic, sheet 3952 Kladno, pp 11–20

  • Kraft P, Kraft J (2003) Facies of the Klabava Formation (?Tremadoc–Arenig) and their fossil content (Barrandian area, Czech Republic). In: Albanesi GL, Beresi MS, Peralta SH (eds) Ordovician from the Andes. INSUGEO, Serie Correlación Geologica 17:309–314

  • Kraft P, Kraft J (2006) Faunal responses to changes in the Prague Basin during Lower/Middle Ordovician. In: Sennikov NV, Kanygin OT, Obut OT, Kipriyanova TP (eds) Palaeogeography and global correlation of Ordovician events. Academic Publishing House Geo, Novosibirsk, pp 26–27

    Google Scholar 

  • Kraft P, Lehnert O, Frýda J (2004) Evolution of the Prague Basin reflecting the lifecycle of the Rheic Ocean. In: Kraft P, Linnemann U, Mazur S (eds) Gondwanan margin of the Rheic Ocean in the Bohemian Massif. Excursion guidebooks and abstracts, opening meeting of the IGCP project No. 497, Prague, p 101

  • Kraft P, Lehnert O, Frýda J (2007) The history of a northern Gondwana rift-basin (Prague Basin) and its relation to evolution of the Rheic Ocean. Proceedings of the IGCP485 and IGCP497 joint conference, El Jadida, Morocco, pp 52–53

  • Kříž J (1992) Silurian field excursions: Prague Basin (Barrandian), Bohemia. National Museum of Wales, Geological Series, no. 13

  • Krs M, Krsová M, Pruner P, Havlíček V (1988) Palaeomagnetism, magnetism and palaeography of the Middle and Upper Cambrian rocks of the Barrandian area in the Bohemian Massif. J Geol Sci Appl Geophys 22:9–48

    Google Scholar 

  • Krs M, Krsová M, Pruner P (1997) Palaeomagnetism and palaeogeography of the Variscan and pre-Variscan formations of the Bohemian Massif. In: Vrána S, Štědrá V (eds) Geological model of western Bohemia related to the KTB borehole in Germany, J Geol Sci Geol 47:162–173

    Google Scholar 

  • Kukal Z (1966) The source of clastic material in the sediments of the Příbram–Jince Cambrian. J Geol Sci Geol 10:83–116

    Google Scholar 

  • Kukal Z (1971) Sedimentology of Cambrian deposits of the Barrandian area (Central Bohemia). J Geol Sci Geol 20:53–100

    Google Scholar 

  • Linnemann U, Gehmlich M, Tichomirowa M, Buschmann B, Nasdala L, Jonas P, Lützner H, Bombach K (2000) From Cadomian subduction to Early Palaeozoic rifting: the evolution of Saxo-Thuringia at the margin of Gondwana in the light of single zircon geochronology and basin development (Central European Variscides, Germany). In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan belt, vol 179. Geological Society, London, Special Publications, pp 131–153

  • Linnemann U, McNaughton NJ, Romer RL, Gehmlich M, Drost K, Tonk C (2004) West African provenance for Saxo-Thuringia (Bohemian Massif): did Armorica ever leave pre-Pangean Gondwana? U/Pb-SHRIMP zircon evidence and the Nd-isotopic record. Int J Earth Sci 93:683–705

    Article  Google Scholar 

  • Linnemann U, Gerdes A, Drost K, Buschmann B (2007) The continuum between Cadomian orogenesis and opening of the Rheic Ocean: constraints from LA-ICP-MS U–Pb zircon dating and analysis of plate-tectonic setting (Saxo-Thuringian zone, northeastern Bohemian Massif, Germany). In: Linnemann U, Nance D, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian–Cadomian active margin to Alleghenian–Variscan collision. Geol Soc Am Spec Paper 423:61–96

  • Linnemann U, Pereira F, Jeffries TE, Drost K, Gerdes A (2008a) The Cadomian Orogeny and the opening of the Rheic Ocean: the diacrony of geotectonic processes constrained by LA-ICP-MS U–Pb zircon dating (Ossa-Morena and Saxo-Thuringian Zones, Iberian and Bohemian Massifs). Tectonophysics 461:21–43

    Article  Google Scholar 

  • Linnemann U, D’Lemos RS, Drost K, Jeffries T, Gerdes A, Romer RL, Samson SD, Strachan, RA (2008b) Cadomian tectonics. In: McCann T (ed) The geology of Central Europe. Precambrian and Palaeozoic, vol 1. Geological Society, London, pp 103–154

  • Linnemann U, Drost K, Elicki O, Gaitzsch B, Gehmlich M, Hahn T, Kroner U, Romer RL (2008c) Das Saxothuringikum. Staatliche Naturhistorische Sammlungen, Museum für Mineralogie und Geologie, Dresden

  • López-Guijarro R, Armendáriz M, Quesada C, Fernández-Suárez J, Murphy JB, Pin C, Bellido F (2008) Ediacaran–Palaeozoic tectonic evolution of the Ossa Morena and Central Iberian zones (SW Iberia) as revealed by Sm–Nd isotope systematics. Tectonophysics 461:202–214

    Article  Google Scholar 

  • Mašek J, Straka J, Hrazdíra P, Pálenský P, Štěpánek P, Hůla P (1997) Křivoklátsko. Geological and nature conservation map of the protected landscape area and biosphere reserve 1:50,000. Czech Geological Survey, Prague

  • Melichar R (2004) Tectonics of the Prague Synform: a hundred years of scientific discussion. Krystalinikum 30:167–187

    Google Scholar 

  • Murphy JB, Eguiluz L, Zulauf G (2002) Cadomian orogens, peri-Gondwanan correlatives and Laurentia–Baltica connections. Tectonophysics 352:1–9

    Article  Google Scholar 

  • Murphy JB, Pisarevsky SA, Nance RD, Keppie JD (2004) Neoproterozoic–Early Paleozoic evolution of peri-Gondwanan terranes: implications for Laurentia–Gondwana connections. Int J Earth Sci 93:659–682

    Article  Google Scholar 

  • Murphy JB, Gutiérrez-Alonso G, Nance RD, Fernández-Suárez J, Keppie JD, Quesada C, Strachan RA, Dostal J (2006) Origin of the Rheic Ocean: rifting along a Neoproterozoic suture? Geology 34:325–328

    Article  Google Scholar 

  • Musil V (2004) Geology, petrology, and geochemistry of volcanic rocks of the Křivoklát–Rokycany belt near Skryje. Diploma thesis, Charles University in Prague

  • Nance RD, Linnemann U (2008) The Rheic Ocean: origin, evolution, and significance. GSA Today 18:4–12

    Article  Google Scholar 

  • Nance RD, Murphy JB, Keppie JD (2002) A Cordilleran model for the evolution of Avalonia. Tectonophysics 352:11–31

    Article  Google Scholar 

  • Nance RD, Miller BV, Keppie JD, Murphy JB, Dostal J (2007) Vestige of the Rheic Ocean in North America: the Acatlán Complex of southern Mexico. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian–Cadomian active margin to Alleghenian–Variscan collision. Geol Soc Am Spec Paper 423:437–452

  • Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, Strachan RA, Woodcock NH (2010) Evolution of the Rheic Ocean. Gondwana Res 17:194–222

    Article  Google Scholar 

  • Nance RD, Gutiérrez-Alonso G, Keppie JD, Linnemann U, Murphy JB, Quesada C, Strachan RA, Woodcock NH (2012) A brief history of the Rheic Ocean. Geosci Frontiers 3:125–135

    Article  Google Scholar 

  • Oczlon MS, Seghedi A, Carrigan CW (2007) Avalonian and Baltican terranes in the Moesian Platform (southern Europe, Romania, and Bulgaria) in the context of Caledonian terranes along the southwestern margin of the East European craton. In: Linnemann U, Nance D, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian–Cadomian active margin to Alleghenian–Variscan collision. Geol Soc Am Spec Paper 423:375–400

  • Ortega-Obregon C, Murphy JB, Keppie JD (2010) Geochemistry and Sm–Nd isotopic systematics of Ediacaran–Ordovician, sedimentary and bimodal igneous rocks in the western Acatlán Complex, southern Mexico: evidence for rifting on the southern margin of the Rheic Ocean. Lithos 114:155–167

    Article  Google Scholar 

  • Patočka F, Smulikowski W (2000) Early Palaeozoic intracontinental rifting and incipient oceanic spreading in the Czech/Polish East Krkonoše/Karkonosze Complex, West Sudetes (NE Bohemian Massif). Geol Sudetica 33:1–15

    Google Scholar 

  • Patočka F, Štorch P (2004) Evolution of geochemistry and depositional settings of Early Palaeozoic siliciclastics of the Barrandian (Teplá–Barrandian Unit, Bohemian Massif, Czech Republic). Int J Earth Sci 93:728–741

    Article  Google Scholar 

  • Patočka F, Vlašímský P, Blechová K (1993) Geochemistry of Early Paleozoic volcanics of the Barrandian basin (Bohemian Massif, Czech Republic): implications for paleotectonic reconstructions. Jahrb Geol Bundesanst 136:873–896

    Google Scholar 

  • Patočka F, Galle A, Vavrdová M, Vlašímský P (1994) Early Paleozoic evolution of the Barrandian Terrane, Bohemian Massif, Czech Republic: paleotectonic implications of sedimentary, fossil and volcanic record. J Czech Geol Soc 39:82–83

    Google Scholar 

  • Patočka F, Fajst M, Kachlík V (2000) Mafic–felsic to mafic–ultramafic Early Palaezoic magmatism of the West Sudetes (NE Bohemian Massif): the South Krkonoše complex. Z Geol Wiss 28:177–210

    Google Scholar 

  • Patočka F, Pruner P, Štorch P (2003) Palaeomagnetism and geochemistry of Early Palaeozoic rocks of the Barrandian (Teplá–Barrandian Unit, Bohemian Massif): palaeotectonic implications. Phys Chem Earth 28:735–749

    Article  Google Scholar 

  • Pharaoh TC (1999) Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): a review. Tectonophysics 314:17–41

    Article  Google Scholar 

  • Pharaoh TC, Winchester JA, Verniers J, Lassen A, Seghedi A (2006) The western accretionary margin of the East European Craton: an overview. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics, vol 32. Geological Society, London, Memoirs, pp 291–311

  • Pin C, Marini F (1993) Early Ordovician continental break-up in Variscan Europe: Nd–Sr isotope and trace element evidence from bimodal igneous associations of the Southern Massif Central, France. Lithos 29:177–196

    Article  Google Scholar 

  • Pin C, Kryza R, Oberc-Dziedzic T, Mazur S, Turniak K, Waldhausrová J (2007) The diversity and geodynamic significance of Late Cambrian (ca. 500 Ma) felsic anorogenic magmatism in the northern part of the Bohemian Massif: a review based on Sm–Nd isotope and geochemical data. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian–Cadomian active margin to Alleghenian–Variscan collision. Geol Soc Am Spec Paper 423:209–229

  • Plomerová J, Babuška V (2010) Long memory of mantle lithosphere fabric—European LAB constrained from seismic anisotropy. Lithos 120:131–143

    Article  Google Scholar 

  • Pollock JC, Hibbard JP, Sylvester PJ (2009) Early Ordovician rifting of Avalonia and birth of the Rheic Ocean: U–Pb detrital zircon constraints from Newfoundland. J Geol Soc Lond 166:501–515

    Article  Google Scholar 

  • Prigmore JK, Butler AJ, Woodcock NH (1997) Rifting during separation of Eastern Avalonia from Gondwana: evidence from subsidence analysis. Geology 25:203–206

    Article  Google Scholar 

  • Robardet M (2003) The Armorica ‘microplate’: fact or fiction? Critical review of the concept and contradictory palaeobiogeographical data. Palaeogeogr Palaeoclimatol Palaeoecol 195:125–148

    Article  Google Scholar 

  • Rochette P, Jackson M, Aubourg C (1992) Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Rev Geophys 30:209–226

    Article  Google Scholar 

  • Rochette P, Aubourg C, Perrin M (1999) Is this magnetic fabric normal? A review and case studies in volcanic formations. Tectonophysics 307:219–234

    Article  Google Scholar 

  • Sánchez-García T, Quesada C, Bellido F (2003) Geodynamic setting and geochemical signatures of Cambrian–Ordovician rift-related igneous rocks (Ossa-Morena Zone, SW Iberia). Tectonophysics 365:233–255

    Article  Google Scholar 

  • Sánchez-García T, Quesada C, Bellido F, Dunning GR, del Tanago JG (2008) Two-step magma flooding of the upper crust during rifting: the Early Paleozoic of the Ossa Morena Zone (SW Iberia). Tectonophysics 461:72–90

    Article  Google Scholar 

  • Sánchez-García T, Bellido F, Pereira MF, Chichorro M, Quesada C, Pin C, Silva JB (2010) Rift-related volcanism predating the birth of the Rheic Ocean (Ossa-Morena zone, SW Iberia). Gondwana Res 17:392–407

    Article  Google Scholar 

  • Schätz M, Zwing A, Tait J, Belka Z, Soffel HC, Bachtadse V (2006) Paleomagnetism of Ordovician carbonate rocks from Malopolska Massif, Holy Cross Mountains, SE Poland—magnetostratigraphic and geotectonic implications. Earth Planet Sci Lett 244:349–360

    Article  Google Scholar 

  • Servais T, Sintubin M (2009) Avalonia, Armorica, Perunica: terranes, microcontinents, microplates or palaeobiogeographical provinces? In: Bassett MG (ed) Early Palaeozoic peri-Gondwana terranes: new insights from tectonics and biogeography, vol 325. Geological Society, London, Special Publiction, pp 103–115

  • Silva JB, Pereira MF (2004) Transcurrent continental tectonics model for the Ossa-Morena Zone Neoproterozoic–Paleozoic evolution, SW Iberian Massif, Portugal. Int J Earth Sci 93:886–896

    Article  Google Scholar 

  • Sláma J, Dunkley DJ, Kachlík V, Kusiak MA (2008) Transition from island-arc to passive setting on the continental margin of Gondwana: U–Pb zircon dating of Neoproterozoic metaconglomerates from the SE margin of the Teplá–Barrandian Unit, Bohemian Massif. Tectonophysics 461:44–59

    Article  Google Scholar 

  • Soejono I, Žáčková E, Janoušek V, Machek M, Košler J (2010) Vestige of an Early Cambrian incipient oceanic crust incorporated in the Variscan orogen: Letovice Complex, Bohemian Massif. J Geol Soc Lond 167:1113–1130

    Article  Google Scholar 

  • Štědrá V, Kachlík V, Kryza R (2002) Coronitic metagabbros of the Mariánské Lázně Complex and Teplá Crystalline Unit: inferences for the tectonometamorphic evolution of the western margin of the Teplá–Barrandian Unit, Bohemian Massif. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe, vol 201. Geological Society, London, Special Publications, pp 217–237

  • Tait J, Bachtadse V, Soffel H (1995) Upper Ordovician palaeogeography of the Bohemian Massif: implications for Armorica. Geophys J Int 122:211–218

    Article  Google Scholar 

  • Tait J, Schätz M, Bachtadse V, Soffel H (2000) Palaeomagnetism and palaeogeography of Gondwana and European terranes. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt, vol 179. Geological Society, London, Special Publications, pp 21–34

  • Tarling DH, Hrouda F (1993) The magnetic anisotropy of rocks. Chapman and Hall, London

    Google Scholar 

  • Tasáryová Z, Janoušek V, Frýda J (2010a) Whole-rock geochemistry of the Sv. Jan diabase sills and dykes in the Loděnice–Bubovice area. Geosci Res Reports 2009:256–258

    Google Scholar 

  • Tasáryová Z, Janoušek V, Frýda J, Manda Š (2010b) Geochemistry of the Silurian effusive volcanics in the Prague Basin. In: Radoň M, Rapprich V (eds) 2nd Volcanologic seminar of the Expert Group in Volcanology of the Czech Geological Society. Abstracts and field guide, pp 47–49

  • Tasáryová Z, Janoušek V, Frýda J, Manda Š, Štorch P, Trubač J (2011) Geochemical constraints on petrogenesis and geotectonic setting for Silurian basalts of the Prague Synform (Bohemian Massif). Miner Mag 75:1988

    Google Scholar 

  • Thompson MD, Grunow AM, Ramezani J (2010) Cambro–Ordovician paleogeography of the Southeastern New England Avalon Zone: implications for Gondwana breakup. Geol Soc Am Bull 122:76–88

    Article  Google Scholar 

  • Timmermann H, Štědrá V, Gerdes A, Noble SR, Parrish RR, Dörr W (2004) The problem of dating high-pressure metamorphism: a U–Pb isotope and geochemical study on eclogites and related rocks of the Mariánské Lázně Complex, Czech Republic. J Petrol 45:1311–1338

    Google Scholar 

  • Timmermann H, Dörr W, Krenn E, Finger F, Zulauf G (2006) Conventional and in situ geochronology of the Teplá Crystalline unit, Bohemian Massif: implications for the processes involving monazite formation. Int J Earth Sci 95:629–647

    Article  Google Scholar 

  • Valverde-Vaquero P, Dörr W, Belka Z, Franke W, Wiszniewska J, Schastok J (2000) U–Pb single-grain dating of detrital zircon in the Cambrian of central Poland: implications for Gondwana versus Baltica provenance studies. Earth Planet Sci Lett 184:225–240

    Article  Google Scholar 

  • Venera Z, Schulmann K, Kröner A (2000) Intrusion within a transtensional tectonic domain: the Čistá granodiorite (Bohemian Massif)—structure and rheological modelling. J Struct Geol 22:1437–1454

    Article  Google Scholar 

  • Verniers J, Pharaoh T, André L, Debacker TN, de Vos W, Everaerts M, Herbosch A, Samuelson J, Sintubin M, Vecoli M (2002) The Cambrian to mid Devonian basin development and deformation history of Eastern Avalonia, east of the Midlands Microcraton: new data and a review. In: Winchester JA, Pharaoh TC, Verniers J (eds) Palaeozoic amalgamation of Central Europe, vol 201. Geological Society, London, Special Publications, pp 47–93

  • Vidal P, Auvray B, Charlot R, Fediuk F, Hameurt J, Waldhausrová J (1975) Radiometric age of volcanics of the Cambrian Křivoklát–Rokycany complex (Bohemian Massif). Geol Rundsch 64:563–570

    Article  Google Scholar 

  • von Raumer JF, Stampfli GM (2008) The birth of the Rheic Ocean–Early Palaeozoic subsidence patterns and subsequent tectonic plate scenarios. Tectonophysics 461:9–20

    Article  Google Scholar 

  • von Raumer JF, Stampfli GM, Borel G, Bussy F (2002) Organization of pre-Variscan basement areas at the north-Gondwanan margin. Int J Earth Sci 91:35–52

    Article  Google Scholar 

  • von Raumer JF, Stampfli GM, Bussy F (2003) Gondwana-derived microcontinents—the constituents of the Variscan and Alpine collisional orogens. Tectonophysics 365:7–22

    Article  Google Scholar 

  • Vrána S, Štědrá V (1997) Geological model of western Bohemia related to the KTB borehole in Germany. J Geol Sci Geol 47:5–240

    Google Scholar 

  • Waldhausrová J (1971) The chemistry of the Cambrian volcanics in the Barrandian area. Krystalinikum 8:45–75

    Google Scholar 

  • Winchester JA (2002) Palaeozoic amalgamation of Central Europe: new results from recent geological and geophysical investigations. Tectonophysics 360:5–21

    Article  Google Scholar 

  • Winchester JA, Pharaoh TC, Verniers J, Ioane D, Seghedi A (2006) Palaeozoic accretion of Gondwana-derived terranes to the East European Craton: recognition of detached terrane fragments dispersed after collision with promontories. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics, vol 32. Geological Society, London, Memoirs, pp 232–332

  • Zulauf G (1997) From very low-grade to eclogite-facies metamorphism: tilted crustal sections as a consequence of Cadomian and Variscan orogeny in the Teplá–Barrandian unit (Bohemian Massif). Geotekt Forsch 89:1–302

    Google Scholar 

  • Zulauf G, Helferich S (1997) Strain and strain rate in a synkinematic trondhjemitic dike: evidence for melt-induced strain softening during shearing (Bohemian Massif, Czech Republic). J Struct Geol 19:639–652

    Article  Google Scholar 

  • Zulauf G, Dörr W, Fiala J, Vejnar Z (1997) Late Cadomian crustal tilting and Cambrian transtension in the Teplá–Barrandian unit (Bohemian Massif, Central European Variscides). Geol Rundsch 86:571–584

    Article  Google Scholar 

  • Zulauf G, Schitter F, Riegler G, Finger F, Fiala J, Vejnar Z (1999) Age constraints on the Cadomian evolution of the Teplá Barrandian unit (Bohemian Massif) through electron microprobe dating of metamorphic monazite. Zeitschr deutsch geol Gesellsch 150:627–639

    Google Scholar 

  • Zulauf G, Romano SS, Dörr W, Fiala J (2007) Crete and Minoan terranes: age constraints from U–Pb dating of detrital zircons. In: Linnemann U, Nance RD, Kraft P, Zulauf G (eds) The evolution of the Rheic Ocean: from Avalonian–Cadomian active margin to Alleghenian–Variscan collision. Geol Soc Am Spec Paper 423:401–411

Download references

Acknowledgments

We gratefully acknowledge Martin Oczlon and Ulf Linnemann for their very constructive reviews which helped to improve the original manuscript significantly. Michal Mergl is thanked for showing us some of the well-hidden dikes in the Plzeň area. Financial support for this research was provided by the Grant Agency of the Czech Republic through Grants No. 205/09/0630 (to František Holub) and No. P210/10/2351 (to Petr Pruner), and by the Ministry of Education, Youth and Sports of the Czech Republic through Research Plans No. MSM0021620855 and SVV261203. This study is also part of the Ph.D. research of Jaroslava Hajná.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Žák.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 63 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Žák, J., Kraft, P. & Hajná, J. Timing, styles, and kinematics of Cambro–Ordovician extension in the Teplá–Barrandian Unit, Bohemian Massif, and its bearing on the opening of the Rheic Ocean. Int J Earth Sci (Geol Rundsch) 102, 415–433 (2013). https://doi.org/10.1007/s00531-012-0811-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-012-0811-2

Keywords

Navigation