Skip to main content
Log in

A comparison of binless spike train measures

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

Several binless spike train measures which avoid the limitations of binning have been recently been proposed in the literature. This paper presents a systematic comparison of these measures in three simulated paradigms designed to address specific situations of interest in spike train analysis where the relevant feature may be in the form of firing rate, firing rate modulations, and/or synchrony. The measures are first disseminated and extended for ease of comparison. It also discusses how the measures can be used to measure dissimilarity in spike trains' firing rate despite their explicit formulation for synchrony.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Actually, in their works, Victor Purpura [1, 2] proposed not one but several spike train distances. Namely, D spike[q], D interval[q], D count[q] and D motif[q]. In this study, and as in most references to their work, VP distance refers to D spike[q].

  2. Filtered spike trains correspond to what is often referred to as “shot noise” in the point processes literature [32, Sect. 16.3].

References

  1. Victor JD, Purpura KP (1996) Nature and precision of temporal coding in visual cortex: a metric-space analysis. J Neurophysiol 76(2):1310–1326

    Google Scholar 

  2. Victor JD, Purpura KP (1997) Metric-space analysis of spike trains: theory, algorithms, and application. Netw Comp Neural Syst 8:127–164

    Article  MATH  Google Scholar 

  3. Wohlgemuth S, Ronacher B (2007) Auditory discrimination of amplitude modulations based on metric distances of spike trains. J Neurophysiol 97:3082–3092. doi:10.1152/jn.01235.2006

    Article  Google Scholar 

  4. Houghton C (2009) Studying spike trains using a van Rossum metric with a synapse-like filter. J Comp Neurosci 26:149–155. doi:10.1007/s10827-008-0106-6

    Article  MathSciNet  Google Scholar 

  5. Brown EN, Kass RE, Mitra PP (2004) Multiple neural spike train data analysis: state-of-the-art and future challenges. Nature Neurosci 7:456–461. doi:10.1038/nn1228

    Article  Google Scholar 

  6. Dayan P, Abbott LF (2001) Theoretical neuroscience: computational and mathematical modeling of neural systems. MIT Press, Cambridge

    MATH  Google Scholar 

  7. Rieke F, Warland D, van Steveninck RR, Bialek W (1999) Spikes: exploring the neural code. MIT Press, Cambridge. ISBN 0-262-18174-6

    Google Scholar 

  8. Mainen ZF, Sejnowski TJ (1995) Reliability of spike timing in neocortical neurons. Science 268(5216):1503–1506. doi:10.1126/science.7770778

    Article  Google Scholar 

  9. Hatsopoulos NG, Ojakangas CL, Paninski L, Donoghue JP (1998) Information about movement direction obtained from synchronous activity of motor cortical neurons. Proc Natl Acad Sci 95(26):15706–15711

    Article  Google Scholar 

  10. Wagner H, Brill S, Kempter R, Carr CE (2005) Microsecond precision of phase delay in the auditory system of the barn owl. J Neurophysiol 94(2):1655–1658. doi:10.1152/jn.01226.2004

    Article  Google Scholar 

  11. Eggermont JJ (2006) Properties of correlated neural activity clusters in cat auditory cortex resemble those of neural assemblies. J Neurophysiol 96(2):746–764. doi:10.1152/jn.00059.2006

    Google Scholar 

  12. Riehle A, Grün S, Diesmann M, Aertsen A (1997) Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278(5345):1950–1953. doi:10.1126/science.278.5345.1950

    Article  Google Scholar 

  13. Grün S, Diesmann M, Aertsen A (2002) Unitary Events in multiple single-neuron activity. I. detection and significance. Neural Comp 14(1):43–80

    Article  MATH  Google Scholar 

  14. Grün S, Diesmann M, Aertsen A (2002) Unitary Events in multiple single-neuron activity. II. nonstationary data. Neural Comp 14(1):43–80

    Article  MATH  Google Scholar 

  15. Grün S, Diesmann M, Grammont F, Riehle A, Aertsen A (1999) Detecting unitary events without discretization of time. J Neurosci Methods 93(1):67–79. doi:10.1016/S0165-0270(99)00126-0

    Article  Google Scholar 

  16. van Rossum MCW (2001) A novel spike distance. Neural Comp 13(4):751–764

    Article  MATH  Google Scholar 

  17. Schreiber S, Fellous JM, Whitmer D, Tiesinga P, Sejnowski TJ (2003) A new correlation-based measure of spike timing reliability. Neurocomp 52–54:925–931. doi:10.1016/S0925-2312(02)00838-X

    Article  Google Scholar 

  18. Kreuz T, Haas JS, Morelli A, Abarbanel HDI, Politi A (2007) Measuring spike train synchrony. J Neurosci Methods 165(1):151–161. doi:10.1016/j.jneumeth.2007.05.031

    Article  Google Scholar 

  19. Hunter JD, Milton JG (2003) Amplitude and frequency dependence of spike timing: Implications for dynamic regulation. J Neurophysiol 90(1):387–394. doi:10.1152/jn.00074.2003

    Article  Google Scholar 

  20. Aronov D, Reich DS, Mechler F, Victor JD (2003) Neural coding of spatial phase in V1 of the macaque monkey. J Neurophysiol 89(6):3304–3327. doi:10.1152/jn.00826.2002

    Article  Google Scholar 

  21. Aronszajn N (1950) Theory of reproducing kernels. Trans Am Math Soc 68(3):337–404

    Article  MATH  MathSciNet  Google Scholar 

  22. Houghton C, Sen K (2008) A new multineuron spike train metric. Neural Comp 20(6):1495–1511. doi:10.1162/neco.2007.10-06-350

    Article  MATH  MathSciNet  Google Scholar 

  23. Victor JD (2005) Spike train metrics. Curr Opin Neurobiol 15(5):585–592. doi:10.1016/j.conb.2005.08.002

    Article  Google Scholar 

  24. Fellous J-M, Tiesinga PHE, Thomas PJ, Sejnowski TJ (2004) Discovering spike patterns in neuronal responses. J Neurosci 24(12):2989–3001. doi:10.1523/JNEUROSCI.4649-03.2004

    Article  Google Scholar 

  25. Paiva ARC, Rao S, Park I, Príncipe JC (2007) Spectral clustering of synchronous spike trains. In: Proceedings of the IEEE international joint conference on neural networks, IJCNN-2007, Orlando, FL, USA

  26. Toups JV, Tiesinga PHE (2006) Methods for finding and validating neural spike patterns. Neurocomputing 69(10–12):1362–1365

    Article  Google Scholar 

  27. Schrauwen B, Van Campenhout J (2007) Linking non-binned spike train kernels to several existing spike train distances. Neurocomputing 70(7–8):1247–1253. doi:10.1016/j.neucom.2006.11.017

    Article  Google Scholar 

  28. Wang L, Narayan R, Graña G, Shamir M, Sen K (2007) Cortical discrimination of complex natural stimuli: can single neurons match behavior? J Neurosci 27(3):582–589. doi:10.1523/JNEUROSCI.3699-06.2007

    Article  Google Scholar 

  29. Abeles M (1991) Corticonics: neural circuits of the cerebral cortex. Cambridge University Press, New York

    Google Scholar 

  30. Shadlen MN, Newsome WT (1994) Noise, neural codes and cortical organization. Curr Opin Neurobiol 4(4):569–579

    Article  Google Scholar 

  31. de Ruyter van Steveninck RR, Lewen GD, Strong SP, Koberle R, Bialek W (1997) Reproducibility and variability in neural spike trains. Science 275:1805–1808

    Article  Google Scholar 

  32. Papoulis A (1965) Probability, random variables, and stochastic processes. McGraw-Hill, New York

    MATH  Google Scholar 

  33. Reiss R-D (1993) A course on point processes. Springer, New York

    MATH  Google Scholar 

  34. Paiva ARC, Park I, Príncipe JC (2009) A reproducing kernel Hilbert space framework for spike train signal processing. Neural Comp 21(2):424–449. doi:10.1162/neco.2008.09-07-614

    Article  MATH  Google Scholar 

  35. Pekalska E, Duin RPW (2005) The dissimilarity representation for pattern recognition: foundations and applications. World Scientific, Singapore. ISBN 9-812-56530-3

    Book  MATH  Google Scholar 

  36. Duda RO, Hart PE, Stork DG (2000) Pattern classification, 2nd edn. Wiley Interscience

  37. Adrian ED (1928) The basis of sensation: the action of the sense organs. W. W. Norton & Co., New York

    Google Scholar 

  38. Kuhn A, Aertsen A, Rotter S (2003) Higher-order statistics of input ensembles and the response of simple model neurons. Neural Comp 15(1):67–101

    Article  MATH  Google Scholar 

  39. Kuhn A, Rotter S, Aertsen A (2002) Correlated input spike trains and their effects on the response of the leaky integrate-and-fire neuron. Neurocomputing 44–46:121–126. doi:10.1016/S0925-2312(02)00372-7

    Article  Google Scholar 

  40. Narayan R, Graña G, Sen K (2006) Distinct time scales in cortical discrimination of natural sounds in songbirds. J Neurophysiol 96(1):252–258. doi:10.1152/jn.01257.2005

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António R. C. Paiva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paiva, A.R.C., Park, I. & Príncipe, J.C. A comparison of binless spike train measures. Neural Comput & Applic 19, 405–419 (2010). https://doi.org/10.1007/s00521-009-0307-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-009-0307-6

Keywords

Navigation