Skip to main content

Advertisement

Log in

Tubular atrophy in the pathogenesis of chronic kidney disease progression

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The longstanding focus in chronic kidney disease (CKD) research has been on the glomerulus, which is sensible because this is where glomerular filtration occurs, and a large proportion of progressive CKD is associated with significant glomerular pathology. However, it has been known for decades that tubular atrophy is also a hallmark of CKD and that it is superior to glomerular pathology as a predictor of glomerular filtration rate decline in CKD. Nevertheless, there are vastly fewer studies that investigate the causes of tubular atrophy, and fewer still that identify potential therapeutic targets. The purpose of this review is to discuss plausible mechanisms of tubular atrophy, including tubular epithelial cell apoptosis, cell senescence, peritubular capillary rarefaction and downstream tubule ischemia, oxidative stress, atubular glomeruli, epithelial-to-mesenchymal transition, interstitial inflammation, lipotoxicity and Na+/H+ exchanger-1 inactivation. Once a a better understanding of tubular atrophy (and interstitial fibrosis) pathophysiology has been obtained, it might then be possible to consider tandem glomerular and tubular therapeutic strategies, in a manner similar to cancer chemotherapy regimens, which employ multiple drugs to simultaneously target different mechanistic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Coresh J, Selvin E, Stevens LA, Manzi J, Kusek JW, Eggers P, Van LF, Levey AS (2007) Prevalence of chronic kidney disease in the United States. JAMA 298:2038–2047

    Article  CAS  PubMed  Google Scholar 

  2. Tonelli M, Muntner P, Lloyd A, Manns BJ, James MT, Klarenbach S, Quinn RR, Wiebe N, Hemmelgarn BR (2011) Using proteinuria and estimated glomerular filtration rate to classify risk in patients with chronic kidney disease: a cohort study. Ann Intern Med 154:12–21

    Article  PubMed  Google Scholar 

  3. Levey AS, de Jong PE, Coresh J, El Nahas M, Astor BC, Matsushita K, Gansevoort RT, Kasiske BL, Eckardt KU (2011) The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney Int 80:17–28

    Article  PubMed  Google Scholar 

  4. Fogo A, Breyer JA, Smith MC, Cleveland WH, Agodoa L, Kirk KA, Glassock R (1997) Accuracy of the diagnosis of hypertensive nephrosclerosis in African Americans: a report from the African American Study of Kidney Disease (AASK) Trial. AASK Pilot Study Investigators. Kidney Int 51:244–252

    Article  CAS  PubMed  Google Scholar 

  5. Zarif L, Covic A, Iyengar S, Sehgal AR, Sedor JR, Schelling JR (2000) Inaccuracy of clinical phenotyping parameters for hypertensive nephrosclerosis. Nephrol Dial Transplant 15:1801–1807

    Article  CAS  PubMed  Google Scholar 

  6. Muehrcke RC, Kark RM, Pirani CL, Pollak VE (1957) Lupus nephritis: a clinical and pathologic study based on renal biopsies. Medicine (Baltimore) 36:1–145

    CAS  Google Scholar 

  7. Rosenbaum JL, Mikail M, Wiedmann F (1967) Further correlation of renal function with kidney biopsy in chronic renal disease. Am J Med Sci 254:156–160

    Article  CAS  PubMed  Google Scholar 

  8. Risdon RA, Sloper JC, De Wardener HE (1968) Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis. Lancet 2:363–366

    Article  CAS  PubMed  Google Scholar 

  9. Schainuck LI, Striker GE, Cutler RE, Benditt EP (1970) Structural-functional correlations in renal disease. Hum Pathol 1:631–641

    Article  CAS  PubMed  Google Scholar 

  10. Bohle A, Mackensen-Haen S, von Gise H (1987) Significance of tubulointerstitial changes in the renal cortex for the excretory function and concentration ability of the kidney: a morphometric contribution. Am J Nephrol 7:421–433

    Article  CAS  PubMed  Google Scholar 

  11. Bunnag S, Einecke G, Reeve J, Jhangri GS, Mueller TF, Sis B, Hidalgo LG, Mengel M, Kayser D, Kaplan B, Halloran PF (2009) Molecular correlates of renal function in kidney transplant biopsies. J Am Soc Nephrol 20:1149–1160

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kriz W, LeHir M (2005) Pathways to nephron loss starting from glomerular diseases—insights from animal models. Kidney Int 67:404–419

    Article  PubMed  Google Scholar 

  13. Striker GE, Schainuck LI, Cutler RE, Benditt EP (1970) Structural-functional correlations in renal disease. I. A method for assaying and classifying histopathologic changes in renal disease. Hum Pathol 1:615–630

    Article  CAS  PubMed  Google Scholar 

  14. Bohle A, Muller GA, Wehrmann M, Mackensen-Haen S, Xiao J-C (1996) Pathogenesis of chronic renal failure in the primary glomerulopathies, renal vasculopathies, and chronic interstitial nephritides. Kidney Int 54:S2–S9

    CAS  Google Scholar 

  15. Cravedi P, Heeger PS (2014) Complement as a multifaceted modulator of kidney transplant injury. J Clin Invest 124:2348–2354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Seron D, Moreso F, Ramon JM, Hueso M, Condom E, Fulladosa X, Bover J, Gil-Vernet S, Castelao AM, Alsina J, Grinyo JM (2000) Protocol renal allograft biopsies and the design of clinical trials aimed to prevent or treat chronic allograft nephropathy. Transplantation 69:1849–1855

    Article  CAS  PubMed  Google Scholar 

  17. Schlondorff DO (2008) Overview of factors contributing to the pathophysiology of progressive renal disease. Kidney Int 74:860–866

    Article  CAS  PubMed  Google Scholar 

  18. Moeller MJ, Sanden SK, Soofi A, Wiggins RC, Holzman LB (2003) Podocyte-specific expression of Cre recombinase in transgenic mice. Genesis 35:39–42

    Article  CAS  PubMed  Google Scholar 

  19. Eremina V, Sood M, Haigh J, Nagy A, Lajoie G, Ferrara N, Gerber HP, Kikkawa Y, Miner JH, Quaggin SE (2003) Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J Clin Invest 111:707–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ortiz A, Ziyadeh FN, Neilson EG (1997) Expression of apoptosis-regulatory genes in renal proximal tubular epithelial cells exposed to high ambient glucose and in diabetic kidneys. J Invest Med 45:50–56

    CAS  Google Scholar 

  21. Schelling JR, Nkemere N, Kopp JB, Cleveland RP (1998) Fas-dependent fratricidal apoptosis is a mechanism of tubular epithelial cell deletion in chronic renal failure. Lab Invest 78:813–824

    CAS  PubMed  Google Scholar 

  22. Khan S, Cleveland RP, Koch CJ, Schelling JR (1999) Hypoxia induces renal tubular epithelial cell apoptosis in chronic renal disease. Lab Invest 79:1089–1099

    CAS  PubMed  Google Scholar 

  23. Schelling JR, Cleveland RP (1999) Involvement of Fas-dependent apoptosis in renal tubular epithelial cell deletion in chronic renal failure. Kidney Int 56:1313–1316

    Article  CAS  PubMed  Google Scholar 

  24. Kelly DJ, Cox AJ, Tolcos M, Cooper ME, Wilkinson-Berka JL, Gilbert RE (2002) Attenuation of tubular apoptosis by blockade of the renin-angiotensin system in diabetic Ren-2 rats. Kidney Int 61:31–39

    Article  CAS  PubMed  Google Scholar 

  25. Kumar D, Robertson S, Burns KD (2004) Evidence of apoptosis in human diabetic kidney. Mol Cell Biochem 259:67–70

    Article  CAS  PubMed  Google Scholar 

  26. Susztak K, Ciccone E, McCue P, Sharma K, Bottinger EP (2005) Multiple metabolic hits converge on CD36 as novel mediator of tubular epithelial apoptosis in diabetic nephropathy. PLoS Med 2:e45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Brezniceanu ML, Liu F, Wei CC, Tran S, Sachetelli S, Zhang SL, Guo DF, Filep JG, Ingelfinger JR, Chan JS (2007) Catalase overexpression attenuates angiotensinogen expression and apoptosis in diabetic mice. Kidney Int 71:912–923

    Article  CAS  PubMed  Google Scholar 

  28. Brezniceanu ML, Liu F, Wei CC, Chenier I, Godin N, Zhang SL, Filepa JG, Ingelfingerb JR, Chan JS (2008) Attenuation of interstitial fibrosis and tubular apoptosis in db/db transgenic mice overexpressing catalase in renal proximal tubular cells. Diabetes 57:451–459

    Article  CAS  PubMed  Google Scholar 

  29. Brezniceanu ML, Lau CJ, Godin N, Chenier I, Duclos A, Ethier J, Filep JG, Ingelfinger JR, Zhang SL, Chan JS (2010) Reactive oxygen species promote caspase-12 expression and tubular apoptosis in diabetic nephropathy. J Am Soc Nephrol 21:943–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Watanabe M, Nakatsuka A, Murakami K, Inoue K, Terami T, Higuchi C, Katayama A, Teshigawara S, Eguchi J, Ogawa D, Watanabe E, Wada J, Makino H (2014) Pemt deficiency ameliorates endoplasmic reticulum stress in diabetic nephropathy. PLoS One 9:e92647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Grgic I, Campanholle G, Bijol V, Wang C, Sabbisetti VS, Ichimura T, Humphreys BD, Bonventre JV (2012) Targeted proximal tubule injury triggers interstitial fibrosis and glomerulosclerosis. Kidney Int 82:172–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Suzuki T, Kimura M, Asano M, Fujigaki Y, Hishida A (2001) Role of atrophic tubules in development of interstitial fibrosis in microembolism-induced renal failure in rat. Am J Pathol 158:75–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kimura M, Asano M, Abe K, Miyazaki M, Suzuki T, Hishida A (2005) Role of atrophic changes in proximal tubular cells in the peritubular deposition of type IV collagen in a rat renal ablation model. Nephrol Dial Transplant 20:1559–1565

    Article  CAS  PubMed  Google Scholar 

  34. Yang H, Fogo AB (2010) Cell senescence in the aging kidney. J Am Soc Nephrol 21:1436–1439

    Article  PubMed  Google Scholar 

  35. Ferenbach DA, Bonventre JV (2015) Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol 11:264–276

    Article  CAS  PubMed  Google Scholar 

  36. Braun H, Schmidt BM, Raiss M, Baisantry A, Mircea-Constantin D, Wang S, Gross ML, Serrano M, Schmitt R, Melk A (2012) Cellular senescence limits regenerative capacity and allograft survival. J Am Soc Nephrol 23:1467–1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barbosa Junior Ade A, Zhou H, Hultenschmidt D, Totovic V, Jurilj N, Pfeifer U (1992) Inhibition of cellular autophagy in proximal tubular cells of the kidney in streptozotocin-diabetic and uninephrectomized rats. Virchows Arch B Cell Pathol Incl Mol Pathol 61:359–366

    Article  PubMed  Google Scholar 

  38. Takabatake Y, Kimura T, Takahashi A, Isaka Y (2014) Autophagy and the kidney: health and disease. Nephrol Dial Transplant 29:1639–1647

    Article  PubMed  Google Scholar 

  39. Liu S, Hartleben B, Kretz O, Wiech T, Igarashi P, Mizushima N, Walz G, Huber TB (2012) Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy 8:826–837

    Article  CAS  PubMed  Google Scholar 

  40. Yamahara K, Kume S, Koya D, Tanaka Y, Morita Y, Chin-Kanasaki M, Araki H, Isshiki K, Araki S, Haneda M, Matsusaka T, Kashiwagi A, Maegawa H, Uzu T (2013) Obesity-mediated autophagy insufficiency exacerbates proteinuria-induced tubulointerstitial lesions. J Am Soc Nephrol 24:1769–1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, Bruns NE, Tsokos M, Alt FW, Finkel T (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci USA 105:3374–3379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. He W, Wang Y, Zhang MZ, You L, Davis LS, Fan H, Yang HC, Fogo AB, Zent R, Harris RC, Breyer MD, Hao CM (2010) Sirt1 activation protects the mouse renal medulla from oxidative injury. J Clin Invest 120:1056–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li J, Qu X, Ricardo SD, Bertram JF, Nikolic-Paterson DJ (2010) Resveratrol inhibits renal fibrosis in the obstructed kidney: potential role in deacetylation of Smad3. Am J Pathol 177:1065–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kume S, Uzu T, Horiike K, Chin-Kanasaki M, Isshiki K, Araki S, Sugimoto T, Haneda M, Kashiwagi A, Koya D (2010) Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J Clin Invest 120:1043–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hasegawa K, Wakino S, Simic P, Sakamaki Y, Minakuchi H, Fujimura K, Hosoya K, Komatsu M, Kaneko Y, Kanda T, Kubota E, Tokuyama H, Hayashi K, Guarente L, Itoh H (2013) Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat Med 19:1496–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ohashi R, Kitamura H, Yamanaka N (2000) Peritubular capillary injury during the progression of experimental glomerulonephritis in rats. J Am Soc Nephrol 11:47–56

    CAS  PubMed  Google Scholar 

  47. Kang DH, Joly AH, Oh SW, Hugo C, Kerjaschki D, Gordon KL, Mazzali M, Jefferson JA, Hughes J, Madsen KM, Schreiner GF, Johnson RJ (2001) Impaired angiogenesis in the remnant kidney model: I. Potential role of vascular endothelial growth factor and thrombospondin-1. J Am Soc Nephrol 12:1434–1447

    CAS  PubMed  Google Scholar 

  48. Ohashi R, Shimizu A, Masuda Y, Kitamura H, Ishizaki M, Sugisaki Y, Yamanaka N (2002) Peritubular capillary regression during the progression of experimental obstructive nephropathy. J Am Soc Nephrol 13:1795–1805

    Article  PubMed  Google Scholar 

  49. Lindenmeyer MT, Kretzler M, Boucherot A, Berra S, Yasuda Y, Henger A, Eichinger F, Gaiser S, Schmid H, Rastaldi MP, Schrier RW, Schlöndorff D, Cohen CD (2007) Interstitial vascular rarefaction and reduced VEGF-A expression in human diabetic nephropathy. J Am Soc Nephrol 18:1765–1776

    Article  CAS  PubMed  Google Scholar 

  50. Mayer G (2011) Capillary rarefaction, hypoxia, VEGF and angiogenesis in chronic renal disease. Nephrol Dial Transplant 26:1132–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kida Y, Tchao BN, Yamaguchi I (2013) Peritubular capillary rarefaction: a new therapeutic target in chronic kidney disease. Pediatr Nephrol 29:333–342

    Article  PubMed  PubMed Central  Google Scholar 

  52. Norman JT, Stidwill R, Singer M, Fine LG (2003) Angiotensin II blockade augments renal cortical microvascular pO2 indicating a novel, potentially renoprotective action. Nephron Physiol 94:39–46

    Article  Google Scholar 

  53. Matsumoto M, Tanaka T, Yamamoto T, Noiri E, Miyata T, Inagi R, Fujita T, Nangaku M (2004) Hypoperfusion of peritubular capillaries induces chronic hypoxia before progression of tubulointerstitial injury in a progressive model of rat glomerulonephritis. J Am Soc Nephrol 15:1574–1581

    Article  PubMed  Google Scholar 

  54. Rosenberger C, Khamaisi M, Abassi Z, Shilo V, Weksler-Zangen S, Goldfarb M, Shina A, Zibertrest F, Eckardt KU, Rosen S, Heyman SN (2008) Adaptation to hypoxia in the diabetic rat kidney. Kidney Int 73:34–42

    Article  CAS  PubMed  Google Scholar 

  55. Fine LG, Norman JT (2008) Chronic hypoxia as a mechanism of progression of chronic kidney diseases: from hypothesis to novel therapeutics. Kidney Int 74:867–872

    Article  CAS  PubMed  Google Scholar 

  56. Manotham K, Tanaka T, Matsumoto M, Ohse T, Miyata T, Inagi R, Kurokawa K, Fujita T, Nangaku M (2004) Evidence of tubular hypoxia in the early phase in the remnant kidney model. J Am Soc Nephrol 15:1277–1288

    Article  PubMed  Google Scholar 

  57. Higgins DF, Kimura K, Bernhardt WM, Shrimanker N, Akai Y, Hohenstein B, Saito Y, Johnson RS, Kretzler M, Cohen CD, Eckardt KU, Iwano M, Haase VH (2007) Hypoxia promotes fibrogenesis in vivo via HIF-1 stimulation of epithelial-to-mesenchymal transition. J Clin Invest 117:3810–3820

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Haase VH (2015) A breath of fresh air for diabetic nephropathy. J Am Soc Nephrol 26:239–241

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nordquist L, Friederich-Persson M, Fasching A, Liss P, Shoji K, Nangaku M, Hansell P, Palm F (2015) Activation of hypoxia-inducible factors prevents diabetic nephropathy. J Am Soc Nephrol 26:328–338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Rosca MG, Vazquez EJ, Chen Q, Kerner J, Kern TS, Hoppel CL (2012) Oxidation of fatty acids is the source of increased mitochondrial reactive oxygen species production in kidney cortical tubules in early diabetes. Diabetes 61:2074–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Geiszt M, Kopp JB, Varnai P, Leto TL (2000) Identification of renox, an NAD(P)H oxidase in kidney. Proc Natl Acad Sci USA 97:8010–8014

  62. Gill PS, Wilcox CS (2006) NADPH oxidases in the kidney. Antioxid Redox Signal 8:1597–1607

    Article  CAS  PubMed  Google Scholar 

  63. Nakashima I, Takeda K, Kawamoto Y, Okuno Y, Kato M, Suzuki H (2005) Redox control of catalytic activities of membrane-associated protein tyrosine kinases. Arch Biochem Biophys 434:3–10

    Article  CAS  PubMed  Google Scholar 

  64. Vallon V (2011) The proximal tubule in the pathophysiology of the diabetic kidney. Am J Physiol Regul Integr Comp Physiol 300:R1009–R1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nlandu Khodo S, Dizin E, Sossauer G, Szanto I, Martin PY, Feraille E, Krause KH, de Seigneux S (2012) NADPH-oxidase 4 protects against kidney fibrosis during chronic renal injury. J Am Soc Nephrol 23:1967–1976

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Sedeek M, Nasrallah R, Touyz RM, Hebert RL (2013) NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J Am Soc Nephrol 24:1512–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gorin Y, Cavaglieri RC, Khazim K, Lee DY, Bruno F, Thakur S, Fanti P, Szyndralewiez C, Barnes JL, Block K, Abboud HE (2015) Targeting NADPH oxidase with a novel dual Nox1/Nox4 inhibitor attenuates renal pathology in type 1 diabetes. Am J Physiol Renal Physiol 308:F1276–F1287

    Article  CAS  PubMed  Google Scholar 

  68. Godin N, Liu F, Lau GJ, Brezniceanu ML, Chenier I, Filep JG, Ingelfinger JR, Zhang SL, Chan JS (2010) Catalase overexpression prevents hypertension and tubular apoptosis in angiotensinogen transgenic mice. Kidney Int 77:1086–1097

    Article  CAS  PubMed  Google Scholar 

  69. Jun M, Venkataraman V, Razavian M, Cooper B, Zoungas S, Ninomiya T, Webster AC, Perkovic V (2012) Antioxidants for chronic kidney disease. Cochrane Database Syst Rev 10:Cd008176

    PubMed  Google Scholar 

  70. de Zeeuw D, Akizawa T, Audhya P, Bakris GL, Chin M, Christ-Schmidt H, Goldsberry A, Houser M, Krauth M, Lambers Heerspink HJ, McMurray JJ, Meyer CJ, Parving HH, Remuzzi G, Toto RD, Vaziri ND, Wanner C, Wittes J, Wrolstad D, Chertow GM, Trial Investigators BEACON (2013) Bardoxolone methyl in type 2 diabetes and stage 4 chronic kidney disease. N Engl J Med 369:2492–2503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Oliver J (1950) When is the kidney not a kidney? J Urol 63:373–402

    Google Scholar 

  72. Chevalier RL, Forbes MS (2008) Generation and evolution of atubular glomeruli in the progression of renal disorders. J Am Soc Nephrol 19:197–206

    Article  PubMed  Google Scholar 

  73. Zuk A, Matlin KS, Hay ED (1989) Type I collagen gel induces Madin-Darby canine kidney cells to become fusiform in shape and lose apical-basal polarity. J Cell Biol 108:903–919

    Article  CAS  PubMed  Google Scholar 

  74. Hay ED, Zuk A (1995) Transformations between epithelium and mesenchyme: Normal, pathological, and experimentally induced. Am J Kidney Dis 26:678–690

    Article  CAS  PubMed  Google Scholar 

  75. Iwano M, Plieth D, Danoff TM, Xue C, Okada H, Neilson EG (2002) Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 110:341–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dong C, Yuan T, Wu Y, Wang Y, Fan TW, Miriyala S, Lin Y, Yao J, Shi J, Kang T, Lorkiewicz P, St Clair D, Hung MC, Evers BM, Zhou BP (2013) Loss of FBP1 by Snail-mediated repression provides metabolic advantages in basal-like breast cancer. Cancer Cell 23:316–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zadran S, Arumugam R, Herschman H, Phelps ME, Levine RD (2014) Surprisal analysis characterizes the free energy time course of cancer cells undergoing epithelial-to-mesenchymal transition. Proc Natl Acad Sci USA 111:13235–13240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fan JM, Ng YY, Hill PA, Nikolic-Paterson DJ, Mu W, Atkins RC, Lan HY (1999) Transforming growth factor-b regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kidney Int 56:1455–1467

    Article  CAS  PubMed  Google Scholar 

  79. Rastaldi MP, Ferrario F, Giardino L, Dell’Antonio G, Grillo C, Grillo P, Strutz F, Müller GA, Colasanti G, D’Amico G (2002) Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies. Kidney Int 62:137–146

    Article  PubMed  Google Scholar 

  80. Faulkner JL, Szcykalski LM, Springer F, Barnes JL (2005) Origin of interstitial fibroblasts in an accelerated model of angiotensin ii-induced renal fibrosis. Am J Pathol 167:1193–1205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Humphreys BD, Lin SL, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Valerius MT, McMahon AP, Duffield JS (2010) Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol 176:85–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Lin SL, Kisseleva T, Brenner DA, Duffield JS (2008) Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol 173:1617–1627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zeisberg M, Duffield JS (2010) Resolved: EMT produces fibroblasts in the kidney. J Am Soc Nephrol 21:1247–1253

    Article  PubMed  Google Scholar 

  84. Morel-Maroger Striker L, Killen PD, Chi E, Striker GE (1984) The composition of glomerulosclerosis. I. Studies in focal sclerosis, crescentic glomerulonephritis, and membranoproliferative glomerulonephritis. Lab Invest 51:181–192

    CAS  PubMed  Google Scholar 

  85. Eddy AA (2014) Overview of the cellular and molecular basis of kidney fibrosis. Kidney Int Suppl 4:S2–S8

    Article  CAS  Google Scholar 

  86. Deng J, Kohda Y, Chiao H, Wang Y, Hu X, Hewitt SM, Miyaji T, McLeroy P, Nibhanupudy B, Li S, Star RA (2001) Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney Int 60:2118–2128

    Article  CAS  PubMed  Google Scholar 

  87. Castano AP, Lin SL, Surowy T, Nowlin BT, Turlapati SA, Patel T, Singh A, Li S, Lupher ML Jr, Duffield JS (2009) Serum amyloid P inhibits fibrosis through Fc gamma R-dependent monocyte-macrophage regulation in vivo. Sci Transl Med 1:5ra13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Anders HJ, Vielhauer V, Frink M, Linde Y, Cohen CD, Blattner SM, Kretzler M, Strutz F, Mack M, Gröne HJ, Onuffer J, Horuk R, Nelson PJ, Schlöndorff D (2002) A chemokine receptor CCR-1 antagonist reduces renal fibrosis after unilateral ureter ligation. J Clin Invest 109:251–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu ZH, Striker GE, Stetler-Stevenson M, Fukushima P, Patel A, Striker LJ (1996) TNF-a and IL-1a induce mannose receptors and apoptosis in glomerular mesangial but not endothelial cells. Am J Physiol Cell Physiol 270:C1595–C1601

    CAS  Google Scholar 

  90. Lange-Sperandio B, Fulda S, Vandewalle A, Chevalier RL (2003) Macrophages induce apoptosis in proximal tubule cells. Pediatr Nephrol 18:335–341

    PubMed  Google Scholar 

  91. Zoja C, Abbate M, Remuzzi G (2014) Progression of renal injury toward interstitial inflammation and glomerular sclerosis is dependent on abnormal protein filtration. Nephrol Dial Transplant 30:706–712

    Article  PubMed  Google Scholar 

  92. Woroniecka KI, Park AS, Mohtat D, Thomas DB, Pullman JM, Susztak K (2011) Transcriptome analysis of human diabetic kidney disease. Diabetes 60:2354–2369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Navarro-Gonzalez JF, Mora-Fernandez C, Muros de Fuentes M, Garcia-Perez J (2011) Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol 7:327–340

    Article  CAS  PubMed  Google Scholar 

  94. Lin SL, Li B, Rao S, Yeo EJ, Hudson TE, Nowlin BT, Pei H, Chen L, Zheng JJ, Carroll TJ, Pollard JW, McMahon AP, Lang RA, Duffield JS (2010) Macrophage Wnt7b is critical for kidney repair and regeneration. Proc Natl Acad Sci USA 107:4194–4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ferenbach DA, Sheldrake TA, Dhaliwal K, Kipari TM, Marson LP, Kluth DC, Hughes J (2012) Macrophage/monocyte depletion by clodronate, but not diphtheria toxin, improves renal ischemia/reperfusion injury in mice. Kidney Int 82:928–933

    Article  CAS  PubMed  Google Scholar 

  96. Li LO, Klett EL, Coleman RA (2010) Acyl-CoA synthesis, lipid metabolism and lipotoxicity. Biochim Biophys Acta 1801:246–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kimmelstiel P, Wilson C (1936) Intercapillary lesions in the glomeruli of the kidney. Am J Pathol 12:83–98

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Oliver J, MacDowell M, Lee YC (1954) Cellular mechanisms of protein metabolism in the nephron. I. The structural aspects of proteinuria; tubular absorption, droplet formation, and the disposal of proteins. J Exp Med 99:589–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Moorhead JF, Chan MK, El-Nahas M, Varghese Z (1982) Lipid nephrotoxicity in chronic progressive glomerular and tubulo-interstitial disease. Lancet 2:1309–1311

    Article  CAS  PubMed  Google Scholar 

  100. Thomas ME, Schreiner GF (1993) Contribution of proteinuria to progressive renal injury: consequences of tubular uptake of fatty acid bearing albumin. Am J Nephrol 13:385–398

    Article  CAS  PubMed  Google Scholar 

  101. Weinberg JM (2006) Lipotoxicity. Kidney Int 70:1560–1566

    Article  CAS  PubMed  Google Scholar 

  102. Ruan XZ, Varghese Z, Moorhead JF (2009) An update on the lipid nephrotoxicity hypothesis. Nat Rev Nephrol 5:713–721

    Article  CAS  PubMed  Google Scholar 

  103. Riedel MJ, Light PE (2005) Saturated and cis/trans unsaturated acyl CoA esters differentially regulate wild-type and polymorphic beta-cell ATP-sensitive K+ channels. Diabetes 54:2070–2079

    Article  CAS  PubMed  Google Scholar 

  104. Riedel MJ, Baczko I, Searle GJ, Webster N, Fercho M, Jones L, Lang J, Lytton J, Dyck JR, Light PE (2006) Metabolic regulation of sodium-calcium exchange by intracellular acyl CoAs. EMBO J 25:4605–4614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. van Timmeren MM, Gross ML, Hanke W, Klok PA, van Goor H, Stegeman CA, Bakker SJ (2008) Oleic acid loading does not add to the nephrotoxic effect of albumin in an amphibian and chronic rat model of kidney injury. Nephrol Dial Transplant 23:3814–3823

    Article  PubMed  CAS  Google Scholar 

  106. Thomas ME, Morrison AR, Schreiner GF (1995) Metabolic effects of fatty acid-bearing albumin on a proximal tubule cell line. Am J Physiol 268:F1177–F1184

    CAS  PubMed  Google Scholar 

  107. Reaven GM, Hollenbeck C, Jeng CY, Wu MS, Chen YD (1988) Measurement of plasma glucose, free fatty acid, lactate, and insulin for 24 h in patients with NIDDM. Diabetes 37:1020–1024

    Article  CAS  PubMed  Google Scholar 

  108. Muntner P, Coresh J, Smith JC, Eckfeldt J, Klag MJ (2000) Plasma lipids and risk of developing renal dysfunction: the atherosclerosis risk in communities study. Kidney Int 58:293–301

    Article  CAS  PubMed  Google Scholar 

  109. Samuelsson O, Mulec H, Knight-Gibson C, Attman PO, Kron B, Larsson R, Weiss L, Wedel H, Alaupovic P (1997) Lipoprotein abnormalities are associated with increased rate of progression of human chronic renal insufficiency. Nephrol Dial Transplant 12:1908–1915

    Article  CAS  PubMed  Google Scholar 

  110. Cases A, Coll E (2005) Dyslipidemia and the progression of renal disease in chronic renal failure patients. Kidney Int Suppl 99:S87–S93

    Article  CAS  PubMed  Google Scholar 

  111. de Boer IH, Rue TC, Cleary PA, Lachin JM, Molitch ME, Steffes MW, Sun W, Zinman B, Brunzell JD, Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study Research Group, White NH, Danis RP, Davis MD, Hainsworth D, Hubbard LD, Nathan DM (2011) Long-term renal outcomes of patients with type 1 diabetes mellitus and microalbuminuria: an analysis of the diabetes control and complications trial/epidemiology of diabetes interventions and complications cohort. Arch Intern Med 171:412–420

    Article  PubMed  PubMed Central  Google Scholar 

  112. Makinen VP, Tynkkynen T, Soininen P, Peltola T, Kangas AJ, Forsblom C, Thorn LM, Kaski K, Laatikainen R, Ala-Korpela M, Groop PH (2012) Metabolic diversity of progressive kidney disease in 325 patients with type 1 diabetes (the FinnDiane study). J Proteome Res 11:1782–1790

    Article  CAS  PubMed  Google Scholar 

  113. Christensen EI, Birn H, Storm T, Weyer K, Nielsen R (2012) Endocytic receptors in the renal proximal tubule. Physiology (Bethesda) 27:223–236

    Article  CAS  Google Scholar 

  114. Abbate M, Zoja C, Corna D, Capitanio M, Bertani T, Remuzzi G (1998) In progressive nephropathies, overload of tubular cells with filtered proteins translates glomerular permeability dysfunction into cellular signals of interstitial inflammation. J Am Soc Nephrol 9:1213–1224

    CAS  PubMed  Google Scholar 

  115. Thomas ME, Harris KPG, Walls J, Furness PN, Brunskill NJ (2002) Fatty acids exacerbate tubulointerstitial injury in protein-overload proteinuria. Am J Physiol 283:F640–F647

    Google Scholar 

  116. Kamijo A, Kimura K, Sugaya T, Yamanouchi M, Hase H, Kaneko T, Hirata Y, Goto A, Fujita T, Omata M (2002) Urinary free fatty acids bound to albumin aggravate tubulointerstitial damage. Kidney Int 62:1628–1637

    Article  CAS  PubMed  Google Scholar 

  117. van Timmeren MM, Bakker SJ, Stegeman CA, Gans RO, van Goor H (2005) Addition of oleic acid to delipidated bovine serum albumin aggravates renal damage in experimental protein-overload nephrosis. Nephrol Dial Transplant 20:2349–2357

    Article  PubMed  CAS  Google Scholar 

  118. Arici M, Brown J, Williams M, Harris KP, Walls J, Brunskill NJ (2002) Fatty acids carried on albumin modulate proximal tubular cell fibronectin production: a role for protein kinase C. Nephrol Dial Transplant 17:1751–1757

    Article  CAS  PubMed  Google Scholar 

  119. Arici M, Chana R, Lewington A, Brown J, Brunskill NJ (2003) Stimulation of proximal tubular cell apoptosis by albumin-bound fatty acids mediated by peroxisome proliferator activated receptor-g. J Am Soc Nephrol 14:17–27

    Article  CAS  PubMed  Google Scholar 

  120. Khan S, Abu Jawdeh BG, Goel M, Schilling WP, Parker MD, Puchowicz MA, Yadav SP, Harris RC, El-Meanawy A, Hoshi M, Shinlapawittayatorn K, Deschênes I, Ficker E, Schelling JR (2014) Lipotoxic disruption of NHE1 interaction with PI(4,5)P2 expedites proximal tubule apoptosis. J Clin Invest 124:1057–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ruggiero C, Elks CM, Kruger C, Cleland E, Addison K, Noland RC, Stadler K (2014) Albumin-bound fatty acids but not albumin itself alter redox balance in tubular epithelial cells and induce a peroxide-mediated redox-sensitive apoptosis. Am J Physiol Renal Physiol 306:F296–F306

    Article  CAS  Google Scholar 

  122. Ghiggeri GM, Ginevri F, Candiano G, Oleggini R, Perfumo F, Queirolo C, Gusmano R (1987) Characterization of cationic albumin in minimal change nephropathy. Kidney Int 32:547–553

    Article  CAS  PubMed  Google Scholar 

  123. Sasaki H, Kamijo-Ikemori A, Sugaya T, Yamashita K, Yokoyama T, Koike J, Sato T, Yasuda T, Kimura K (2009) Urinary fatty acids and liver-type fatty acid binding protein in diabetic nephropathy. Nephron Clin Pract 112:c148–156

    Article  CAS  PubMed  Google Scholar 

  124. Sun L, Halaihel N, Zhang W, Rogers T, Levi M (2002) Role of sterol regulatory element-binding protein 1 in regulation of renal lipid metabolism and glomerulosclerosis in diabetes mellitus. J Biol Chem 277:18919–18927

    Article  CAS  PubMed  Google Scholar 

  125. Proctor G, Jiang T, Iwahashi M, Wang Z, Li J, Levi M (2006) Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with type 1 diabetes. Diabetes 55:2502–2509

    Article  CAS  PubMed  Google Scholar 

  126. Herman-Edelstein M, Scherzer P, Tobar A, Levi M, Gafter U (2013) Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J Lipid Res 55:561–572

    Article  PubMed  CAS  Google Scholar 

  127. Guder WG, Wagner S, Wirthensohn G (1986) Metabolic fuels along the nephron: pathways and intracellular mechanisms of interaction. Kidney Int 29:41–45

    Article  CAS  PubMed  Google Scholar 

  128. Meyer C, Nadkarni V, Stumvoll M, Gerich J (1997) Human kidney free fatty acid and glucose uptake: evidence for a renal glucose-fatty acid cycle. Am J Physiol 273:E650–654

    CAS  PubMed  Google Scholar 

  129. Kang HM, Ahn SH, Choi P, Ko YA, Han SH, Chinga F, Park AS, Tao J, Sharma K, Pullman J, Bottinger EP, Goldberg IJ, Susztak K (2014) Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat Med 21:37–46

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Farese RV Jr, Walther TC (2009) Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139:855–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Garbarino J, Padamsee M, Wilcox L, Oelkers PM, D’ Ambrosio D, Ruggles K, Ramsey N, Jabado O, Turkish A, Sturley SL (2009) Sterol and diacylglycerol acyltransferase deficiency triggers fatty acid mediated cell death. J Biol Chem 284:30994–31005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Urahama Y, Ohsaki Y, Fujita Y, Maruyama S, Yuzawa Y, Matsuo S, Fujimoto T (2008) Lipid droplet-associated proteins protect renal tubular cells from fatty acid-induced apoptosis. Am J Pathol 173:1286–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Greenberg AS, Coleman RA, Kraemer FB, McManaman JL, Obin MS, Puri V, Yan QW, Miyoshi H, Mashek DG (2011) The role of lipid droplets in metabolic disease in rodents and humans. J Clin Invest 121:2102–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Liu L, Zhang K, Sandoval H, Yamamoto S, Jaiswal M, Sanz E, Li Z, Hui J, Graham BH, Quintana A, Bellen HJ (2015) Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell 160:177–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Schaffer JE (2003) Lipotoxicity: when tissues overeat. Curr Opin Lipidol 14:281–287

    Article  CAS  PubMed  Google Scholar 

  136. Ouyang J, Parakhia RA, Ochs RS (2011) Metformin activates AMP kinase through inhibition of AMP deaminase. J Biol Chem 286:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Simon-Szabo L, Kokas M, Mandl J, Keri G, Csala M (2014) Metformin attenuates palmitate-induced endoplasmic reticulum stress, serine phosphorylation of IRS-1 and apoptosis in rat insulinoma cells. PLoS One 9:e97868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Keech A, Simes RJ, Barter P, Best J, Scott R, Taskinen MR, Forder P, Pillai A, Davis T, Glasziou P, Drury P, Kesäniemi YA, Sullivan D, Hunt D, Colman P, d’Emden M, Whiting M, Ehnholm C, Laakso M, FIELD study investigators (2005) Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet 366:1849–1861

    Article  CAS  PubMed  Google Scholar 

  139. Park CW, Kim HW, Ko SH, Chung HW, Lim SW, Yang CW, Chang YS, Sugawara A, Guan Y, Breyer MD (2006) Accelerated diabetic nephropathy in mice lacking the peroxisome proliferator-activated receptor alpha. Diabetes 55:885–893

    Article  CAS  PubMed  Google Scholar 

  140. Park CW, Zhang Y, Zhang X, Wu J, Chen L, Cha DR, Su D, Hwang MT, Fan X, Davis L, Striker G, Zheng F, Breyer M, Guan Y (2006) PPARα agonist fenofibrate improves diabetic nephropathy in db/db mice. Kidney Int 69:1511–1517

    Article  CAS  PubMed  Google Scholar 

  141. Fogo AB (2011) PPARγ and chronic kidney disease. Pediatr Nephrol 26:347–351

    Article  PubMed  Google Scholar 

  142. Davis TM, Ting R, Best JD, Donoghoe MW, Drury PL, Sullivan DR, Jenkins AJ, O’Connell RL, Whiting MJ, Glasziou PP, Simes RJ, Kesäniemi YA, Gebski VJ, Scott RS, Keech AC, Fenofibrate Intervention and Event Lowering in Diabetes Study investigators (2011) Effects of fenofibrate on renal function in patients with type 2 diabetes mellitus: the Fenofibrate Intervention and Event Lowering in Diabetes (FIELD) Study. Diabetologia 54:280–290

    Article  CAS  PubMed  Google Scholar 

  143. Hong YA, Lim JH, Kim MY, Kim TW, Kim Y, Yang KS, Park HS, Choi SR, Chung S, Kim HW, Kim HW, Choi BS, Chang YS, Park CW (2014) Fenofibrate improves renal lipotoxicity through activation of AMPK-PGC-1a in db/db mice. PLoS One 9:e96147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Okada Y, Maeno E, Shimizu T, Dezaki K, Wang J, Morishima S (2001) Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J Physiol 532:3–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Matsuyama S, Llopis J, Deveraux QL, Tsien RY, Reed JC (2000) Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cell Biol 2:318–325

    Article  CAS  PubMed  Google Scholar 

  146. Segal MS, Beem E (2001) Effect of pH, ionic charge, and osmolality on cytochrome c-mediated caspase-3 activity. Am J Physiol 281:C1196–C1204

    CAS  Google Scholar 

  147. Wu KL, Khan S, Lakhe-Reddy S, Wang LM, Jarad G, Miller RT, Konieczkowski M, Brown AM, Sedor JR, Schelling JR (2003) Renal tubular epithelial cell apoptosis is associated with caspase cleavage of the NHE1 Na+/H+ exchanger. Am J Physiol Renal Physiol 284:F829–F839

    Article  CAS  PubMed  Google Scholar 

  148. Wu KL, Khan S, Lakhe-Reddy S, Jarad G, Mukherjee A, Obejero-Paz CA, Konieczkowski M, Sedor JR, Schelling JR (2004) The NHE1 Na+/H+ exchanger recruits ezrin/radixin/moesin proteins to regulate Akt-dependent cell survival. J Biol Chem 279:26280–26286

    Article  CAS  PubMed  Google Scholar 

  149. Aharonovitz O, Zaun HC, Balla T, York JD, Orlowski J, Grinstein S (2000) Intracellular pH regulation by Na+/H+ exchange requires phosphatidylinositol 4,5-bisphosphate. J Cell Biol 150:213–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Fuster D, Moe OW, Hilgemann DW (2004) Lipid- and mechanosensitivities of sodium/hydrogen exchangers analyzed by electrical methods. Proc Natl Acad Sci USA 101:10482–10487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wakabayashi S, Nakamura TY, Kobayashi S, Hisamitsu T (2010) Novel phorbol ester-binding motif mediates hormonal activation of Na+/H+ exchanger. J Biol Chem 285:26652–26661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Abu Jawdeh BG, Khan S, Deschênes I, Hoshi M, Goel M, Lock JT, Shinlapawittayatorn K, Babcock G, Lakhe-Reddy S, DeCaro G, Yadav SP, Mohan ML, Naga Prasad SV, Schilling WP, Ficker E, Schelling JR (2011) Phosphoinositide binding differentially regulates NHE1 Na+/H+ exchanger-dependent proximal tubule cell survival. J Biol Chem 286:42435–42445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bocanegra V, Gil Lorenzo AF, Cacciamani V, Benardon ME, Costantino VV, Valles PG (2014) RhoA and MAPKinase signal transduction pathways regulate NHE1 Na+/H+ exchanger-dependent proximal tubule cell apoptosis following mechanical stretch. Am J Physiol Renal Physiol 307:F881–F889

    Article  CAS  PubMed  Google Scholar 

  154. Manucha W, Carrizo L, Ruete C, Valles PG (2007) Apoptosis induction is associated with decreased NHE1 expression in neonatal unilateral ureteric obstruction. BJU Int 100:191–198

    Article  CAS  PubMed  Google Scholar 

  155. Lupescu A, Geiger C, Zahir N, Aberle S, Lang PA, Kramer S, Wesselborg S, Kandolf R, Foller M, Lang F, Bock CT (2009) Inhibition of Na+/H+ exchanger activity by parvovirus B19 protein NS1. Cell Physiol Biochem 23:211–220

    Article  CAS  PubMed  Google Scholar 

  156. Yang HC, Zuo Y, Fogo AB (2010) Models of chronic kidney disease. Drug Discov Today Dis Model 7:13–19

    Article  CAS  Google Scholar 

  157. Esposito C, He CJ, Striker GE, Zalups RK, Striker LJ (1999) Nature and severity of the glomerular response to nephron reduction is strain-dependent in mice. Am J Pathol 154:891–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gharavi AG, Ahmad T, Wong RD, Hooshyar R, Vaughn J, Oller S, Frankel RZ, Bruggeman LA, D’Agati VD, Klotman PE, Lifton RP (2004) Mapping a locus for susceptibility to HIV-1-associated nephropathy to mouse chromosome 3. Proc Natl Acad Sci USA 101:2488–2493

  159. Gurley SB, Clare SE, Snow KP, Hu A, Meyer TW, Coffman TM (2006) Impact of genetic background on nephropathy in diabetic mice. Am J Physiol Renal Physiol 290:F214–F222

    Article  CAS  PubMed  Google Scholar 

  160. Gipson DS, Trachtman H, Kaskel FJ, Greene TH, Radeva MK, Gassman JJ, Moxey-Mims MM, Hogg RJ, Watkins SL, Fine RN, Hogan SL, Middleton JP, Vehaskari VM, Flynn PA, Powell LM, Vento SM, McMahan JL, Siegel N, D’Agati VD, Friedman AL (2011) Clinical trial of focal segmental glomerulosclerosis in children and young adults. Kidney Int 80:868–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I am grateful to Drs. Katherine Dell and John O’Toole for careful review of the manuscript. Dr. Schelling is supported by NIH grants NIH 2R01 DK067528 and 2U01 DK061021.

Conflict of interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey R. Schelling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schelling, J.R. Tubular atrophy in the pathogenesis of chronic kidney disease progression. Pediatr Nephrol 31, 693–706 (2016). https://doi.org/10.1007/s00467-015-3169-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-015-3169-4

Keywords

Navigation