Skip to main content
Log in

Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The effect of water–alcohol (methanol, ethanol, propan-1-ol, propan-2-ol, ethane-1,2-diol and propane-1,2,3-triol) binary mixtures on the kinetics of hydrogen peroxide decomposition in the presence of bovine liver catalase is investigated. In all solvents, the activity of catalase is smaller than in water. The results are discussed on the basis of a simple kinetic model. The kinetic constants for product formation through enzyme–substrate complex decomposition and for inactivation of catalase are estimated. The organic solvents are characterized by several physical properties: dielectric constant (D), hydrophobicity (log P), concentration of hydroxyl groups ([OH]), polarizability (α), Kamlet-Taft parameter (β) and Kosower parameter (Z). The relationships between the initial rate, kinetic constants and medium properties are analyzed by linear and multiple linear regression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dai L, Klibanov AM (1999) Striking activation of oxidative enzymes suspended in nonaqueous media. Proc Natl Acad Sci USA 96:9475–9478

    Article  CAS  Google Scholar 

  2. Krishna SH (2002) Developments and trends in enzyme catalysis in nonconventional media. Biotechnol Adv 20:239–267

    Article  Google Scholar 

  3. Vermue MH, Tramper J (1995) Biocatalysis in non-conventional media: medium engineering aspects (technical report). Pure Appl Chem 67:345–373

    Article  Google Scholar 

  4. Eijsink VGH, Bjork A, Gaseidnes S, Sirevag R, Synstad B, van den Burg B, Vriend G (2004) Rational engineering of enzyme stability. J Biotechnol 113:105–120

    Article  CAS  Google Scholar 

  5. Ghadermarzi M, Moosavi-Movahedi AA (1999) Influence of different types of effectors on the kinetic parameters of suicide inactivation of catalase by hydrogen peroxide. Biochim Biophys Acta 1431:30–36

    Article  CAS  Google Scholar 

  6. Taravati A, Shokrzadeh M, Ebadi AG, Valipour P, Tabar A, Hassan M, Farrokhi F (2007) Various Effects of Sugar and Polyols on the Protein Structure and Function: Role as Osmolyte on Protein Stability. World Appl Sci J 2:353–362

    Google Scholar 

  7. Guerrero-Mendiola C, Oria-Hernández J, Ramírez-Silva L (2009) Kinetics of the thermal inactivation and aggregate formation of rabbit muscle pyruvate kinase in the presence of trehalose. Arch Biochem Biophys 490:129–136

    Article  CAS  Google Scholar 

  8. Iyer PV, Ananthanarayan L (2008) Enzyme stability and stabilization—Aqueous and non-aqueous environment. Process Biochem 43:1019–1032

    Article  CAS  Google Scholar 

  9. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246

    Article  CAS  Google Scholar 

  10. Wescott CR, Klibanov AM (1994) The solvent dependence of enzyme specificity. Biochim Biophys Acta 1206:1–9

    Article  CAS  Google Scholar 

  11. Anfinsen CB Jr, Anson ML, Bailey K, Edsall JT (1962) Advances in Protein Chemistry, vol 17. Academic Press, New York

    Google Scholar 

  12. Janssen AEM, Sjursnes BJ, Vakurov AV, Halling PJ (1999) Kinetics of lipase-catalyzed esterification in organic media. Correct model and solvent effects on parameters. Enzyme Microb Technol 24:463–470

    Article  CAS  Google Scholar 

  13. Murugan R, Mazumdar S (2006) Effect of alcohols on binding of camphor to cytochrome P450cam: Spectroscopic and stopped flow transient kinetic studies. Arch Biochem Biophys 455:154–162

    Article  CAS  Google Scholar 

  14. Delabie A, Creve S, Coussens B, Nguyen MT (2000) Theoretical study of the solvent effect on the hydrogen abstraction reaction of the methyl radical with hydrogen peroxide. J Chem Soc Perkin Trans 2:977–981

    Google Scholar 

  15. Emine A, Leman T (1995) Characterization of immobilized catalases and their application in pasteurization of milk with H2O2. Appl Biochem Biotechnol 50:291–303

    Article  Google Scholar 

  16. Lardinois OM, Mestdagh MM, Rouxhet MG (1996) Reversible inhibition and irreversible inactivation of catalase in presence of hydrogen peroxide. Biochim Biophys Acta 1295:222–238

    Article  Google Scholar 

  17. Strother GK, Ackerman E (1961) Physical factors influencing catalase rate constants. Biochim Biophys Acta 47:317–326

    Article  CAS  Google Scholar 

  18. Haber J, Maslakiewicz P, Rodakiewicz-Nowak J, Walde P (1993) Activity and spectroscopic properties of bovine liver catalase in sodium bis(2-ethylhexyl)sulfosuccinate/isooctane reverse micelles. Eur J Biochem 217:567–573

    Article  CAS  Google Scholar 

  19. Jene Q, Pearson FC, Lowe CR (1997) Surfactant modified enzymes: solubility and activity of surfactant-modified catalase in organic solvents. Enzyme Microb Technol 20:69–74

    Article  CAS  Google Scholar 

  20. Escobar L, Salvador C, Contreras M, Escamilla JE (1990) On the application of the Clark oxygen electrode to the study of enzyme kinetics in apolar solvents: The catalase reaction. Anal Biochem 184:139–144

    Article  CAS  Google Scholar 

  21. Campanella L, Favero G, Persi L, Sammartino MP, Tomassetti M, Visco G (1991) Organic phase enzyme electrodes: applications and theoretical studies. Anal Chim Acta 426:235–247

    Article  Google Scholar 

  22. Varma S, Mattiasson B (2005) Amperometric biosensor for the detection of hydrogen peroxide using catalase modified electrodes in polyacrylamide. J Biotechnol 119:172–180

    Article  CAS  Google Scholar 

  23. Beers RF, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    CAS  Google Scholar 

  24. Tephly TR, Atkins M, Mannering GJ, Parks RE Jr (1965) Activation of a catalase peroxidative pathway for the oxidation of alcohols in mammalian erythrocytes. Biochem Pharmacol 14:435–444

    Article  CAS  Google Scholar 

  25. Hnaien M, Lagarde F, Jaffrezic-Renault N (2010) A rapid and sensitive alcohol oxidase/catalase conductometric biosensor for alcohol determination. Talanta 81:222–227

    Article  CAS  Google Scholar 

  26. Bartos J, Pesez M (1979) Colorimetric and fluorimetric determination of aldehydes and ketones. Pure Appl Chem 51:1803–1814

    Article  Google Scholar 

  27. Mayberry WE, Hockert TJ, Kinetics of iodination VI (1970) Effect of solvent on hydroxyl ionization and iodination of l-tyrosine and 3-iodo-l-tyrosine. J Biol Chem 245:697–700

    CAS  Google Scholar 

  28. Sengwa Madhvi RJ, Sankhla S, Sharma S (2006) Characterization of heterogeneous interaction behavior in ternary mixtures by a dielectric analysis: equi-molar H-bonded binary polar mixtures in aqueous solutions. J Solution Chem 35:1037–1055

    Article  Google Scholar 

  29. El-Subruiti GM (1997) Solvent effects on the kinetics of solvolysis of trans-dichlorobis (N-methylethylenediamine) cobalt (III) ion in water ± propan-2-ol and water ± acetonitrile mixtures. Transition Met Chem 22:33–38

    Article  CAS  Google Scholar 

  30. Lide DR (ed) (2005) CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton

    Google Scholar 

  31. Koppel IA, Palm VA (1972) Advances in linear free energy relationships. Plenum Press, London

    Google Scholar 

  32. Katritzky AR, Fara DC, Yang H, Tamm K (2004) Quantitative measures of solvent polarity. Chem Rev 104:175–198

    Article  CAS  Google Scholar 

  33. Chance B (1950) The reactions of catalase in the presence of the notatin system. Biochem J 46:387–402

    CAS  Google Scholar 

  34. Oancea D, Stuparu A, Nita M, Puiu M, Raducan A (2008) Estimation of the overall kinetic parameters of enzyme inactivation using an isoconversional method. Biophys Chem 138:50–54

    Article  CAS  Google Scholar 

  35. Ackerman E (1961) Effect of dielectric changes on catalase reaction rates. Biochim Biophys Acta 50:181–183

    Article  CAS  Google Scholar 

  36. Kato S, Ueno T, Fukuzumi S, Watanabe Y (2004) Catalase reaction by myoglobin mutants and native catalase. Mechanistic investigation by kinetic isotope effect. J Biol Chem 279:52376–52381

    Article  CAS  Google Scholar 

  37. Ianni J (2003) KINTECUS Windows Version 3.1, http://www.kintecus.addr.com/

  38. Kirkwood JG, Westheimer FH (1938) The electrostatic influence of substituents on the dissociation constants of organic acids. J Chem Phys 6:506–512

    Article  CAS  Google Scholar 

  39. Amis ES (1966) Solvent effects on reaction rates and mechanisms. Academic Press, New York

    Google Scholar 

  40. Hiromi K (1960) Theory of the influence of the dielectric constant on the rate of reaction in solution with application to enzyme reactions. I. Development of the theory and its application to some simple systems. Bull Chem Soc Japan 33:1251–1264

    Article  CAS  Google Scholar 

  41. Hiromi K (1960) Theory of the Influence of the Dielectric Constant on the Rate of Reaction in Solution with Application to Enzyme Reactions. II. Application of the Theory to Enzyme Reactions. Bull Chem Soc Japan 33:1264–1268

    Article  CAS  Google Scholar 

  42. Michels PC, Dordick JS, Clark DS (1997) Dipole formation and Solvent Restriction in Subtlisin Catalysis. J Am Chem Soc 119:9331–9335

    Article  CAS  Google Scholar 

  43. Gogoi P, Hazarika S, Dutta NN, Rao PG (2009) Laccase catalysed conjugation of catechin with poly(allylamine): solvent effect. Chem Eng J 155:810–815

    Article  CAS  Google Scholar 

  44. Hirakawa H, Kamiya N, Kawarabayashi Y, Nagamune T (2005) Log P effect of organic solvents on a thermophilic alcohol dehydrogenase. Biochim Biophys Acta 1748:94–99

    Article  CAS  Google Scholar 

  45. Barberis S, Quiroga E, Morcelle S, Priolo N, Luco JM (2006) Study of phytoproteases stability in aqueous-organic biphasic systems using linear free energy relationships. J Molec Catal B-Enzym 38:95–103

    Article  CAS  Google Scholar 

  46. Hillhorst R, Spujit R, Laane C, Veeger C (1984) Rules for regulation of enzyme activity in reverse micelles as illustrated by the conversion of apolar steroid by 20 β-hydrosteroid dehydrogenase. Eur J Biochem 144:459–466

    Article  Google Scholar 

  47. Cobbs A, Estrada P (2003) Effect of polyhydroxylic cosolvents on the thermostability and activity of xylanase from Trichoderma reesei QM 9414. Enzyme Microb Technol 33:810–818

    Article  Google Scholar 

  48. Deb N, Bagchi S, Mukherjee AK (2009) Fluorimetric study of water–ethanol interaction and its effect on the micellisation of sodium dodecyl sulphate in the presence of bovine serum albumin. Spectrochim Acta A 73:370–373

    Article  Google Scholar 

  49. Schneider A (1991) A three dimensional solubility parameter approach to nonaqueous enzymology. Biotechnol Bioeng 37:627–638

    Article  CAS  Google Scholar 

  50. Reichardt C (1990) Solvents and solvent effects in organic chemistry, 2nd edn. Verlag Chemie, Weinheim

    Google Scholar 

Download references

Acknowledgments

Dr. Mihaela Puiu is grateful to the strategic grant POSDRU/89/1.5/S/58852 Project “Postdoctoral programme for training young scientific researchers” co-financed by the European Social Found within the Sectorial Operational Program Human Resources Development 2007–2013 for the fellowship supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adina Raducan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raducan, A., Cantemir, A.R., Puiu, M. et al. Kinetics of hydrogen peroxide decomposition by catalase: hydroxylic solvent effects. Bioprocess Biosyst Eng 35, 1523–1530 (2012). https://doi.org/10.1007/s00449-012-0742-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-012-0742-0

Keywords

Navigation