Skip to main content
Log in

Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes

  • Stable Isotopes Issue
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Assessments of temporal variation in diets are important for our understanding of the ecology of many vertebrates. Ratios of naturally occurring stable isotopes in animal tissues are a combination of the source elements and tissue specific fractionation processes, and can thus reveal dietary information. We review three different approaches that have been used to resolve temporal diet variation through analysis of stable isotopes. The most straightforward approach is to compare samples from the same type of tissue that has been sampled over time. This approach is suited to address either long or short-term dietary variation, depending on sample regime and which tissue that is sampled. Second, one can compare tissues with different metabolic rates. Since the elements in a given tissue have been assimilating during time spans specific to its metabolic rate, tissues with different metabolic rates will reflect dietary records over different periods. Third, comparisons of sections from tissues with progressive growth, such as hair, feathers, claws and teeth, will reveal temporal variation since these tissues will retain isotopic values in a chronological order. These latter two approaches are mainly suited to address questions regarding intermediate and short-term dietary variation. Knowledge of tissue specific metabolic rates, which determine the molecular turnover for a specific tissue, is of central importance for all these comparisons. Estimates of isotopic fractionation between source and measured target are important if specific hypotheses regarding the source elements are addressed. Estimates of isotopic fractionation, or at least of differences in fractionation between tissues, are necessary if different tissues are compared. We urge for more laboratory experiments aimed at improving our understanding of differential assimilation of dietary components, isotopic fractionation and metabolic routing. We further encourage more studies on reptiles and amphibians, and generally more studies utilizing multiple tissues with different turnover rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ainley DG, Ballard G, Barton KJ, Karl BJ, Rau GH, Ribic CH, Wilson PR (2003) Spatial and temporal variation within a presumed metapopulation of Adelie penguins. Condor 105:95–106

    Article  Google Scholar 

  • Ambrose SH (1990) Preparation and characterization of bone and tooth collagen for isotopic analysis. J Archaeol Sci 17:431–451

    Article  Google Scholar 

  • Ambrose SH (1993) Isotopic analysis of palaeodiets: methodological and interpretive considerations. In: Sanford MK (ed) Investigations of ancient human tissue. Gordon and Breach, Langhorn, pp 59–130

    Google Scholar 

  • Ambrose SH, DeNiro MJ (1986) The isotopic ecology of East Africa mammals. Oecologia 69:395–406

    Article  Google Scholar 

  • Ambrose SH, Krigbaum J (2003) Bone chemistry and bioarchaeology. J Anthropol Archaeol 22:193–199

    Article  Google Scholar 

  • Ambrose SH, Norr L (1993) Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary proteins to those of bone collagen and carbonate. In: Lambert JB, Grupe G (eds) Prehistoric bone—archaeology at the molecular level. Springer, Berlin Heidelberg New York, pp 1–38

    Google Scholar 

  • Ayliffe LK, Lister AM, Chivas AR (1992) The preservation of glacial-interglacial climatic signatures in the oxygen isotopes of elephant skeletal phosphate. Palaeogeogr Palaeoclim Palaeoecol 99:179–191

    Article  Google Scholar 

  • Ayliffe LK, Cerling TE, West AG, Sponheimer M, Passey BH, Hammer J, Roeder B, Dearing MD, Ehleringer JR (2004) Turnover of carbon isotopes in tail hair and breath CO2 of horses fed an isotopically varied diet. Oecologia 139:11–22

    Article  PubMed  CAS  Google Scholar 

  • Barnett BA (1994) Carbon and nitrogen isotope ratios of caribou tissues, vascular plants, and lichens from Northern Alaska. MSc thesis, University of Alaska, Fairbanks, Alaska, USA

  • Bearhop S, Waldron S, Voiter SC, Furness, RW (2002) Factors that influence assimilation rates and fractionation of nitrogen and carbon stable isotopes in avian blood and feathers. Phys Biochem Zool 75:451–458

    Article  CAS  Google Scholar 

  • Bearhop S, Furness RW, Hilton GM, Voiter SC, Waldron S (2003) A forensic approach to understanding diet and habitat use from stable isotope analysis of (avian) claw material. Funct Ecol 17:270–275

    Article  Google Scholar 

  • Ben-David M, Flynn RW, Schell DM (1997) Annual and seasonal changes in marten diets: evidence from stable isotopes. Oecologia 111:280–291

    Article  Google Scholar 

  • Brown JH, Whitham TG, Ernest SKM, Gehring CA (2001) Complex species interactions and the dynamics of ecological systems: long-term experiments. Science 293:643–650

    Article  PubMed  CAS  Google Scholar 

  • Cerling TE, Viehl K (2004) Seasonal diet changes of the forest hog (Hylochohoerus meinertzhageni Thomas) based on carbon isotopic composition of hair. Afr J Ecol 42:88–92

    Article  Google Scholar 

  • Cerling TE, Passey BH, Ayliffe LK, Cook CS, Ehleringer JR, Harris JM, Dhidha MB, Kasiki SM (2004) Orphans’ tales: seasonal dietary changes in elephants from Tsavo National Park, Kenya. Palaeogeogr Palaeoclim Palaeoecol 206:367–376

    Article  Google Scholar 

  • Cherel Y, Hobson KA, Weimerskirch H (2000) Using stable-isotope analysis of feathers to distinguish moulting and breeding origins of seabirds. Oecologia 122:155–162

    Article  Google Scholar 

  • Chisholm BS, Nelson DE, Schwarcz HP (1982) Stable-carbon isotope ratios as a measure of marine versus terrestrial protein in ancient diets. Science 216:1131–1132

    Article  PubMed  CAS  Google Scholar 

  • Darimont CT, Reimchen TE (2002) Intra hair stable isotope analysis implies seasonal shift to salmon in grey wolf diet. Can J Zool 80:1638–1642

    Article  Google Scholar 

  • De Smet S, Balcaen A, Claeys E, Boeckx P, Van Cleemput O (2004) Stable carbon isotope analysis of different tissues of beef animals in relation to their diet. Rapid Commun Mass Spectrom 18:1227–1232

    Article  PubMed  CAS  Google Scholar 

  • Deb D (1997) Trophic uncertainty vs parsimony in food web research. Oikos 788:191–194

    Article  Google Scholar 

  • DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochem Cosmochim Acta 42:495–506

    Article  Google Scholar 

  • DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochem Cosm Acta 45:351–351

    Google Scholar 

  • Elmhagen B, Tannerfeldt M, Verucci P, Angerbjörn A (2001) The arctic fox (Alopex lagopus): an opportunistic specialist. J Zool 251:139–149

    Article  Google Scholar 

  • Evans-Ogden LJE, Hobson KA, Lank DB (2004) Blood isotopic (δ13C and δ15N) turnover and diet-tissue fractionation factors in captive dunlin (Calidris alpina pacifica). Auk 121:170–177

    Article  Google Scholar 

  • Fuller TK, Sievert PR (2001) Carnivore demography and the consequences of changes in prey availability. In: Gittleman JL, Funk SM, Macdonald D, Wayne RK (eds) Carnivore conservation. Cambridge University Press, Cambridge, pp 163–178

    Google Scholar 

  • Gannes LZ, O’Brien DM, Martinez Del Rio C (1997) Stable isotopes in animal ecology, assumptions, caveats and a call for more laboratory experiments. Ecology 78:1271–1276

    Google Scholar 

  • Gannes LZ, Martinez Del Rio C, Koch P (1998) Natural abundance variations in stable isotopes and their potential uses in animal physiological ecology. Rapid Commun Mass Spectrom 119:725–737

    CAS  Google Scholar 

  • Genoni L, Iacumin P, Nikolaev V, Gribchenko Y, Longinelli A (1998) Oxygen isotope measurements of mammoth and reindeer skeletal remains: an archive of Late Pleistocene environmental conditions in Eurasian Arctic. Earth Planetary Sci Lett 160:587–592

    Article  CAS  Google Scholar 

  • Greaves DK, Hammill MO, Eddington JD, Pettipas D, Schreer JF (2004) Growth rate and shedding of vibrissae in the grey seal, Halichoerus grypus: a cautionary note for stable isotope analysis. Mar Mamm Sci 20:296–304

    Article  Google Scholar 

  • Helldin JO (2000) Seasonal diet of pine marten Martes martes in southern boreal Sweden. Acta Theriol 45:409–420

    Google Scholar 

  • Hildebrand GV, Farley SD, Robbins CT, Hanley TA, Titus K, Servheen C (1996) Use of stable isotopes to determine diets of living and extinct bears. Can J Zool 74:2080–2088

    Article  Google Scholar 

  • Hiron AC, Schell DM, Finney BP (2001) Temporal records of δ13C and δ15N in North Pacific pinnipeds: inferences regarding environmental change in diet. Oecologia 129:591–601

    Google Scholar 

  • Hobson KA (1993) Trophic relationships among high Arctic seabirds: insights from tissue-dependent stable isotope models. Mar Ecol Progr Ser 95:7–18

    Article  Google Scholar 

  • Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120:314–326

    Article  Google Scholar 

  • Hobson KA, Bairlein F (2003) Isotopic fractionation and turnover in captive garden warblers (Sylvia borin): implications for delineating dietary and migratory associations in wild passerines. Can J Zool 81:1630–1635

    Article  Google Scholar 

  • Hobson KA, Clark RG (1992a) Assessing avian diet using stable isotopes I: turnover of 13C in tissues. Condor 94:181–188

    Article  Google Scholar 

  • Hobson KA, Clark RG (1992b) Assessing avian diet using stable isotopes II: factors influencing diet-tissue fractionation. Condor 94:189–197

    Article  Google Scholar 

  • Hobson KA, Clark RG (1993) Turnover of 13C in cellular and plasma fractions of blood: implications for non-destructive sampling in avian dietary studies. Auk 110:638–641

    Google Scholar 

  • Hobson KA, Sease JL (1998) Stable isotope analysis of tooth annuli reveal temporal dietary records: an example using stellars sea lions. Mar Mamm Sci 14:116–129

    Article  Google Scholar 

  • Hobson KA, Schell DM, Renouf D, Noseworthy E (1996) Stable carbon and nitrogen isotopic fractionation between diet and tissues of captive seals: implications for dietary reconstructions. Can J Fish Aquat Sci 53:528–533

    Article  Google Scholar 

  • Howland MR, Corr LT, Young SMM, Jones V, Jim S, Van der Merwe NJ, Mitchell AD, Evershed RP (2003) Expression of the dietary isotope signal in the compound-specific δ13C values of pig bone lipids and amino acids. Int J Osteoarchaeol 13:54–65

    Article  Google Scholar 

  • Jim S, Ambrose SH, Evershed RP (2004) Stable carbon isotopic evidence for differences in the dietary origin of bone cholesterol, collagen and apatite; Implications for their use in palaeodietary reconstruction.Geochem Cosmochim Acta 68:61–72

    Article  CAS  Google Scholar 

  • Jones RJ, Throughton JH, Blunt CD (1981) Changes in the natural carbon isotope ratios of the hair from steers fed diets of C4, C3 and C4 species in a sequence. Search 12:85–87

    CAS  Google Scholar 

  • Keeling CI, Nelson DE (2001) Changes in intramolecular stable carbon isotope ratios with age of the European cave bear (Ursus spelaeus). Oecologia 127:495–500

    Article  Google Scholar 

  • Kelly JF (2000) Stable isotopes of carbon and nitrogen in the study of avian and mammalian trophic ecology. Can J Zool 78:1–27

    Article  Google Scholar 

  • Korschgren LJ (1994) Procedures for food-habit analyses. In: Bookhaut TA (ed) Research and managements techniques for wildlife and habitats. The wildlife society, Bethesda, pp 113–126

    Google Scholar 

  • Kurle CM, Worthy GAJ (2002) Stable carbon and nitrogen isotope ratios in multiple tissues of the northern fur seal Callorhrinus ursinus: implications for dietary and migratory reconstructions. Mar Ecol Progr Ser 236:289–300

    Article  Google Scholar 

  • Lesange V, Hammil MO, Kovacs MK (2002) Diet-tissue fractionation of stable carbon and nitrogen isotopes in phocid seals. Mar Mamm Sci 18:182–193

    Article  Google Scholar 

  • Lidén K, Angerbjörn A (1999) Dietary change and stable isotopes: a model of growth and dormancy in cave bears. Proc R Soc Lond B Biol Sci 266:1779–1783

    Article  Google Scholar 

  • Mizutani H, Fukada M, Kubaya Y (1992) 13C and 15N enrichment factors for feathers of 11 species of adult birds. Ecology 73:1391–1395

    Article  Google Scholar 

  • Nelson DE, Angerbjörn A, Lidén K, Turk I (1998) Stable isotopes and the metabolism of the European cave bear. Oecologia 116:177–181

    Article  Google Scholar 

  • Pearson SF, Levey DJ, Greenberg CH, Martinez del Rio C (2003) Effects of elemental composition on the incorporation of dietary nitrogen and carbon stable isotopic signatures in an omnivorous songbird. Oecologia 135:516–523

    PubMed  Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320

    Article  Google Scholar 

  • Ponsard S, Averbuch P (1999) Should growing and adult individuals show different δ15N values? Rapid Commun Mass Spectrom 13:1305–1310

    Article  PubMed  CAS  Google Scholar 

  • Pruell RJ, Taplin BK, Cicchelli K (2003) Stable isotope in archived striped bass scales suggest changes in trophic structure. Fish Man Ecol 10:329–336

    Article  Google Scholar 

  • Reid DG, Krebs CJ, Kenney AJ (1997) Patterns of predation on non-cyclic lemmings. Ecol Monogr 67:89–108

    Article  Google Scholar 

  • Reynolds JC, Aebisher NJ (1991) Comparisons and quantification of carnivore diet by fecal analyses: a critique, with recommendations, based on a study on the fox Vulpes vulpes. Mamm Rev 21:97–122

    Google Scholar 

  • Roth J, Hobson KA (2000) Stable carbon and nitrogen isotopic fractionation between diet and tissue of captive red foxes: implications for dietary reconstruction. Can J Zool 78:848–852

    Article  Google Scholar 

  • Rubenstein DR, Hobson KA (2004) From birds to butterflies: animal movements patterns and stable isotopes. Trends Ecol Evol 19:256–263

    Article  PubMed  Google Scholar 

  • Schell DM, Saupe SM, Haubenstock N (1989) Bowhead whale (Balena mysticetus) growth and feeding as estimated by δ13C techniques. Mar Biol 103:433–443

    Article  Google Scholar 

  • Schmidt-Nielsen K (1984) Scaling: why is animal size so important? Cambridge University Press, Cambridge

    Google Scholar 

  • Schoeninger MJ, DeNiro MJ, Tauber H (1983) Stable nitrogen isotope of bone collagen reflect marine and terrestrial components of human diets. Science 20:1381–1383

    Article  Google Scholar 

  • Schwarcz HP (1991) Some theoretical aspects of isotope palaeodiet studies. J Archaeol Sci 18:261–275

    Article  Google Scholar 

  • Schwertl M, Auerswald K, Schynder H (2003) Reconstruction of the isotopic history of animal diets by hair segmental analysis. Rapid Commun Mass Spectrom 17:1312–1318

    Article  PubMed  CAS  Google Scholar 

  • Sealy JC, van der Merwe NJ, Lee Thorp JA, Lanhman JL (1987) Nitrogen isotopic ecology in southern Africa: implications for environmental and dietary tracing. Geochem Cosmochim Acta 51:2707–2717

    Article  CAS  Google Scholar 

  • Sponheimer M, Robinson T, Ayliffe L, Passey B, Roeder B, Shipley L, Lopez E, Cerling T, Dearing D, Ehleringer J (2003) An experimental study of carbon-isotope fractionation between diet, hair, and feces of mammalian herbivores. Can J Zool 81:871–876

    Article  CAS  Google Scholar 

  • Sponheimer M, Robinson T, Ayliffe L, Roeder B, Hammer J, Passey B, West A, Cerling T, Dearing D, Ehleringer J (2003) Nitrogen isotopes in mammalian herbivores: hair δ15N values from a controlled feeding study. J Osteoarcheol 13:80–87

    Article  Google Scholar 

  • Szepanski MM, Ben-David M, Van Ballenberghe V (1999) Assessment of anadromous salmon resources in the diet of the Alexander archipelago wolf using stable isotope analysis. Oecologia 120:327–335

    Article  Google Scholar 

  • Thompson DR, Furness RW (1995) Stable-isotope ratios of carbon and nitrogen in feathers indicate seasonal dietary shifts in northern fulmars. Auk 112:493–498

    Google Scholar 

  • Thomson DR, Furness RW, Lewis SA (1995) Diet and long-term changes in delta-N-15 and delta-C-13 values in northern fulmars Fulmarus glacialis from 2 northeast Atlantic colonies. Mar Ecol Progr Ser 125:3–11

    Article  Google Scholar 

  • Tieszen LL, Boutton K (1989) Stable carbon isotopes in ecological research. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotopes in ecological research. Springer, Berlin Heidelberg New York, pp 167–195

    Google Scholar 

  • Tieszen LL, Fagre T (1993) Effect of diet quality and composition on the isotopic composition of respiratory CO2, bone collagen, bioapatite, and soft tissue. In: Lambert JB, Grupe G (eds) Prehistoric bone—archaeology at the molecular level. Springer, Berlin Heidelberg New York, pp 121–156

    Google Scholar 

  • Tieszen LL, Boutton KG, Tesdahl KG, Slade NA (1983) Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ13C analysis of diet. Oecologia 57:32–37

    Article  Google Scholar 

  • Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet δ15N enrichment: a meta analysis. Oecologia 136:169–182

    Article  PubMed  Google Scholar 

  • Voight CC, Matt F, Michener R, Kunz TH (2003) Low turnover rates of carbon isotopes in tissues of two nectar-feeding bat species. J Exp Biol 206:1419–1427

    Article  Google Scholar 

  • Welle S (1999) Human protein metabolism. Springer, Berlin Heidelberg New York

    Google Scholar 

  • White CD, Schwarcz HP (1994) Temporal trends in stable isotopes for Nubian mummy tissues. Am J Phys Anthropol 93:165–187

    Article  PubMed  CAS  Google Scholar 

  • Wiedeman BD, Bocherens H, Mariotti A, von den Driesch A (1999) Methodological and archaeological implications of intra-tooth isotopic variations (delta 13C, delta 18O) in herbivores from Ain Ghazel (Jordan, Neolothic). J Archaeol Sci 26:697–704

    Article  Google Scholar 

  • Witt GB, Ayliffe LK (2001) Carbon isotope variability in the one collagen of red kangaroos (Macropus rufus) is age dependent: implications for palaeodietary studies. J Archaeol Sci 28:247–252

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Dalerum.

Additional information

Communicated by Jim Ehleringer

Appendix 1

Appendix 1

Studies found to have used stable carbon or nitrogen isotopes to resolve temporal patterns in the diets of wild vertebrates, including species studied and measured tissues

References

Typea

Species

Tissue

Mammals

Ben-David et al. (1997) Oecologia 111:280–291

1

American marten (Martes americana)

Blood, Muscle

Ben-David et al. (2001) Alces 37:371–402

1

Moose (Alces alces), Caribou (Rangifer tarandus)

Blood Blood, Hair

Ben-David et al. (2004) Oecologia 138:465–474

1

Grizzly bear (Ursus arctos horribilis)

 

Cerling et al. (2004) Palaeogeogr Palaeoclim Palaeoecol 206:367–376

1

African elephant (Loxodonta africana)

Hair

Drever et al. (2000) Can J Zool 78:2010–2018

1

Keen’s mice (Peromyscus keeni), Townsend’s vole (Microtus townsendii cowani)

Muscle, Liver

Felicetti et al. (2003) Can J Zool 81:763–770

1

Grizzly bear (Ursus arctos horribilis)

Blood, Hair

Fleming et al. (1993) Oecologia 94:72–75

1

Lesser long-nosed bat (Leptonycteris curasoae), Palla’s long-tongued bat (Glossophaga soricina)

Muscle

Herrera et al. (2001) J Mamm 82:352–361

1

Jamaican fruit bat (Artibeus jamaicensis), Palla’s long-tongued bat (Glossophaga soricina)

Blood

Hildebrand et al. (1996) Can J Zool 74:2080–2088

1

Grizzly bear (Ursus arctos horribilis)

Bone, Blood

Hiron et al. (2001) Oecologia 129:591–601

1

Steller sea lions (Eumetopias jubatus), Northern fur seal (Callorhinus ursinus), Harbour seal (Phoca vitulina)

Bone

Kurle and Worthy (2001) Oecologia 126:254–265

1

Northern fur seal (Callorhinus ursinus)

Skin

Roth (2002) Oecologia 133:70–77

1

Arctic fox (Alopex lagopus)

Hair

Smith et al. (2002) J Arid Env 52:419–430

1

Dipodomys ordii, D. merriami, Chaetodipus beileyi, C. Pencillatus, Reithrodontomys megalotis, Onychomys torridus

Bone

Szepanski et al. (1999) Oecologia 120:327–335

1

Grey wolf (Canis lupus)

Bone

Walker et al. (1999) Mar Mamm Sci 15:335–350

1

Bottlenose dolphin (Tursiops truncatus)

Teeth

Abend et al. (1995) Ices J Mar Sci 52:837–841

2

Long-finned pilot whale (Globichephala melas)

Muscle, Blubber, Teeth, Skin

Ben-David et al. (2004) Oecologia 138:465–474

2

Grizzly bear (Ursus arctos horribilis)

Blood, Hair

Hobson et al. (1999) J Wildl Manage 63:14–25

2

Norway rat (Rattus norvegicus)

Muscle, Liver

Kurle and Worthy (2002) Mar Ecol Prog Ser 236:289–300

2

Northern fur seal (Callorhinus ursinus)

Fur, Muscle, Brain, Blubber, Liver, Kidney

Lavin et al. (2003) Can J Zool 81:1070–1082

2

Red fox (Vulpes vulpes), Coyote (Canis latrans)

Serum, Blood, Hair

Barnett (1994) MSc, University of Alaska, Fairbanks

3

Caribou (Rangifer tarandus)

Hoof, Hair

Best and Schell (1996) Mar Biol 124:483–494

3

Southern right whale (Eubaleana australis)

Baleen

Cerling and Viehl (2004) Afr J Ecol 42:88–92

3

Forest hog (Hylochohoerus meinertzhageni)

Hair

Cerling et al. (2003) Palaeogeogr Palaeoclim Paeleoecol 206:367–376

3

African elephant (Loxodonta africana)

Hair, Teeth

Derimont and Reimchen (2002) Can J Zool 80:1638–1642

3

Grey wolf (Canis lupus)

Hair

Hobson and Schell (1998) Can J Fish Aq Sci 55:2601–2607

3

Bowhead whale (Balaena musticetus)

Baleen

Hobson and Sease (1998) Mar Mamm Sci 14:116–129

3

Steller sea lions (Eumetopias jubatus)

Teeth

Schell (2000) Limn Oceanogr 45:459–462

3

Bowhead whale (Balaena musticetus)

Baleen

Schell et al. (1989) Mar Biol 103:433–443

3

Bowhead whale (Balaena musticetus)

Baleen

Zazzo et al. (2002) Palaeogeogr Palaeoclim Paleoecol 186:145–161

3

Tragoportax afghanicus

Teeth

Birds

Ainley et al. (2003) Condor 105:95–106

1

Adelie penguin (Pygoscelis adeliae)

Claws

Bearhop et al. (1999) J Appl Ecol 36:75–84

1

Cormorant (Phalacrocorax carbo)

Feathers

Bearhop et al. (2000) Mar Ecol Prog Ser 195:261–268

1

Great skua (Stercorarius skua)

Feathers

Bearhop et al. (2001) Condor 103:802–809

1

Great skua (Stercorarius skua)

Feathers

Cherel et al. (2002) Mar Ecol Prog Ser 228:283–299

1

Blue petrel (Halobanea caerulea)

Feathers

Cherel et al. (2000) Oecologia 122:155–162

1

Black browed albatross (Diomeda melanophrys)

Feathers

Forero et al. (2002) Mar Ecol Prog Ser 234:289–299

1

Magellanic penguin (Spheniscus magellanicus)

Blood

Graves et al. (2002) PNAS 99:8096–8100

1

Black-throated blue warbler (Dendroica caerulesens)

Feathers

Hebert et al. (1999) Can J Fish Aq Sci 56:323–338

1

Herring gull (Larus argentatus)

Egg

Hodum and Hobson (2000) Mar Ecol Prog Ser 198:273–281

1

Antarctic fulmar (Fulmarus glacialoides), Antarctic petrel (Thalassoica antarctica), Cape petrel (Daption capense), Snow petrel (Pagodroma nivea)

Blood cells

Minami et al. (1995) Condor 97:565–574

1

Sooty sheerwater (Puffinus griseus), Short-tailed sheerwater (P. tennuirostris)

Muscle

Mizutani et al. (1990) Auk 107:400–437

1

Great cormorant (Phalacrocorax carbo)

Feathers

Nisbeth et al. (2002) Mar Ecol Prog Ser 242:267–274

1

Common tern (Sterna hirundo)

Feathers

Sagerup et al. (2002) Ecotoxicology 11:119–125

1

Glaucus gull (Larus hyperboreus)

 

Smith et al. (2002) J Arid Env 52:419–430

1

Black-throated sparrow (Amphispiza bilineata), Brewer’s sparrow (Spizella breweri)

Bone

Thompson and Furness (1995) Auk 112:493–498

1

Northern fulmar (Lulmarus glacialis)

Feathers

Thomson et al. (1995) Mar Ecol Prog Ser 125:3–11

1

Northern fulmar (Lulmarus glacialis)

Feathers

Hobson (1993) Mar Ecol Prog Ser 95:7–18

2

Dovekies (Alle alle), Galucous gulls (Larus hyperboreus), Common eider (Somateria mollissima), Black-legged kittiwake (Rissa trdactyla), Thick-billed murres (Uria lomvia), Northern fulmar (Fulmarus glacialis), Black guillemot (Cepphus grylle)

Bone, Muscle, Liver

Hobson and Sealy (1991) Auk 108:437–440

2

Northern Saw-whet owl (Aegolius acadicus)

Muscle, Bone

Knoff et al. (2001) Iso Env Health Stud 37:67–88

2

Laughing gull (Larus atricilla)

Blood, Feather, Muscle

Morrisey et al. (2004) J Appl Ecol 41:502–512

2

American dipper (Cinclus mexicanus)

Blood, Feather

Schmutz and Hobson (1998) Condor 100:119–130

2

Glaucus gull (Larus hyperboreus)

Muscle, Liver, Blood

Thompson and Furness (1995) Auk 112:493–498

2

Northern fulmar (Lulmarus glacialis)

Feathers, Muscle, Bone

Bearhop et al. (2003) Funct Ecol 17:270–275

3

Great tit (Parus major), Blue tit (P. caeruleus), Coal tit (P. ater), Chaffinch (Fingilla coelebs), Robin (Erithacus rubecula)

Claw

Knoff et al. (2002) Waterbirds 25:142–148

3

Laughing gull (Larus atricilla)

Feather

Fish

Gao et al. (2001) Env Biol Fish 61:445–453

1

Cod (Gadus morhua)

Otoliths

Limburg (1998) Can J Fish Aq Sci 55:431–437

1

Alosa aestivalis, A. sapidissima, A. pseudoharengus

Whole body

MacAvoy et al. (2001) Can J Fish Aq Sci 58:923–932

1

Blue catfish (Ictalurus furcatus)

Muscle

Maruyama et al. (2001) Can J Fish Aq Sci 58:2125–2128

1

Goby (Rhinogobius sp.)

Muscle

Murchie and Power (2004) Freshw Biol 49:41–54

1

Yellow perch (Perca flavescens)

Whole body

Persic et al. (2004) Est Coast Shelf Sci 60:261–272

1

Atherina boyeri, Gobius niger, Pomathoschistus sp., Gasterosteus aculeatus, Sygnatus acus, Anguilla anguilla, Lepomis gibbosus, Stizostedion lucioperca, Abramis sp., Mugilidae sp.

Whole body, Muscle

Persson and Hanson (1999) Can J Fish Aq Sci 56:70–78

1

Roach (Rutilus rutilus), Perch (Perca fluviatilis)

Muscle

Pruell et al. (2003) Fish Man Ecol 10:329–336

1

Striped bass (Marone saxatilis)

Scales, Muscle

Vizzini and Mazzola (2003) Mar Biol 142:1009–1018

1

Anguilla anguilla, Atherina boyeri, Gobius niger, Lipophrys pavo, Liza aurata, Sungtatus abaster, Zosterisessor ophiocephalus

Whole body

Wantzen et al. (2002) Aq Sci 64:239–251

1

Freshwater fish

Whole body

Gaston and Suthers (2004) J Exp Mar Biol Ecol 304:17–33

2

Mado (Atuphictus strigatus)

Bone, Liver, Muscle

Carpenter et al. (2003) Nature 423:70–74

3

Vohrisia vulpes

Otoliths

Gao and Beamish (2002) Fish Res 60:393–404

3

Pacific halibut (Hippoglossus stenolepis)

Otoliths

Gao et al. (2001) Can J Fish Aq Sci 58:2113–2120

3

Pacific herring (Clupea pallasi)

Otoliths

Weidman and Millner (2000) Fish Res 46:327–342

3

Cod (Gadus morhua)

Otoliths

Wurster and Paterson (2003) Paleobiol 29:492–505

3

Freshwater drum (Aplodinotus grunnies)

Otoliths

Reptiles

Smith et al. (2002) J Arid Env 52:419–430

1

Holbrookia makulata, Urosaurus ornatus, Cnemidophorus uniparens, Sceloporus virgatus, S. Undulatus

Bone

  1. aIndicates type of comparison for temporal analysis; 1 comparison of same tissue, 2 comparisons of tissues with different metabolic growth, 3 comparisons of segments of tissues with progressive growth

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalerum, F., Angerbjörn, A. Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes. Oecologia 144, 647–658 (2005). https://doi.org/10.1007/s00442-005-0118-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-005-0118-0

Keywords

Navigation