Skip to main content

Advertisement

Log in

Novel Robinow syndrome causing mutations in the proximal region of the frizzled-like domain of ROR2 are retained in the endoplasmic reticulum

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

ROR2 is a member of the cell surface receptor tyrosine kinase (RTKs) family of proteins and is involved in the developmental morphogenesis of the skeletal, cardiovascular and genital systems. Mutations in ROR2 have been shown to cause two distinct human disorders, autosomal recessive Robinow syndrome and dominantly inherited Brachydactyly type B. The recessive form of Robinow syndrome is a disorder caused by loss-of-function mutations whereas Brachydactyly type B is a dominant disease and is presumably caused by gain-of-function mutations in the same gene. We have previously established that all the missense mutations causing Robinow syndrome in ROR2 are retained in the endoplasmic reticulum and therefore concluded that their loss of function is due to a defect in their intracellular trafficking. These mutations were in the distal portion of the frizzled-like cysteine rich domain and kringle domain. Here we report the identification of two novel mutations in the frizzled-like cysteine-rich domain of ROR2 causing Robinow syndrome. We establish the retention of the mutated proteins in the endoplasmic reticulum of HeLa cells and therefore failure to reach the plasma membrane. The clustering of Robinow-causing mutations in the extracellular frizzled-like cysteine-rich domain of ROR2 suggests a stringent requirement for the correct folding of this domain prior to export of ROR2 from the endoplasmic reticulum to the plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Afzal AR, Jeffery S (2003) One gene, two phenotypes: ROR2 mutations in autosomal recessive Robinow syndrome and autosomal dominant brachydactyly type B. Hum Mutat 22:1–11

    Article  PubMed  CAS  Google Scholar 

  • Afzal AR, Rajab A, Fenske CD, Oldridge M, Elanko N, Ternes-Pereira E, Tuysuz B, Murday VA, Patton MA, Wilkie AOM, Jeffery S (2000) Recessive Robinow syndrome, allelic to dominant brachydactyly type B, is caused by mutation of ROR2. Nat Genet 25:419–422

    Article  PubMed  CAS  Google Scholar 

  • Aridor M, Hannan LA (2000) Traffic Jam: a compendium of human diseases that affect intracellular transport processes. Traffic 1:836–851

    Article  PubMed  CAS  Google Scholar 

  • Aridor M, Hannan LA (2002) Traffic Jam II: an update of diseases of intracellular transport. Traffic 3:781–790

    Article  PubMed  CAS  Google Scholar 

  • Billiard J, Way DS, Seestaller-Wehr LM, Moran RA, Mangine A, Bodine PV (2005) The orphan receptor tyrosine kinase Ror2 modulates canonical Wnt signaling in osteoblastic cells. Mol Endocrinol 19:90–101

    Article  PubMed  CAS  Google Scholar 

  • Chan SD, Karpf DB, Fowlkes ME, Hooks M, Bradley MS, Vuong V, Bambino T, Liu MY, Arnaud CD, Strewler GJ et al (1992) Two homologs of the Drosophila polarity gene frizzled (fz) are widely expressed in mammalian tissues. J Biol Chem 267:25202–25207

    PubMed  CAS  Google Scholar 

  • Chen Y, Bellamy WP, Seabra MC, Field MC, Ali BR (2005) ER-associated protein degradation is a common mechanism underpinning numerous monogenic diseases including Robinow syndrome. Hum Mol Genet 14:2559–2569

    Article  PubMed  CAS  Google Scholar 

  • Dann CE, Hsieh JC, Rattner A, Sharma D, Nathans J, Leahy DJ (2001) Insights into Wnt binding and signalling from the structures of two Frizzled cysteine-rich domains. Nature 412:86–90

    Article  PubMed  CAS  Google Scholar 

  • DeChiara TM, Kimble RB, Poueymirou WT, Rojas J, Masiakowski P, Valenzuela DM, Yancopoulos GD (2000) Ror2, encoding a receptor-like tyrosine kinase, is required for cartilage and growth plate development. Nat Genet 24:271–274

    Article  PubMed  CAS  Google Scholar 

  • Forrester WC (2002) The Ror receptor tyrosine kinase family. Cell Mol Life Sci 59:83–96

    Article  PubMed  CAS  Google Scholar 

  • Huang H-C, Klein PS (2004) The Frizzled family: receptors for multiple signal transduction pathways. Genome Biol 5:234

    Article  PubMed  Google Scholar 

  • Kameya S, Hawes NL, Chang B, Heckenlively JR, Naggert JK, Nishina PM (2002) Mfrp, a gene encoding a frizzled related protein, is mutated in the mouse retinal degeneration 6. Hum Mol Genet 11:1879–1886

    Article  PubMed  CAS  Google Scholar 

  • Kaykas A, Yang-Snyder J, Heroux M, Shah KV, Bouvier M, Moon RT (2004) Mutant Frizzled 4 associated with vitreoretinopathy traps wild-type Frizzled in the endoplasmic reticulum by oligomerization. Nat Cell Biol 6:52–58

    Article  PubMed  CAS  Google Scholar 

  • Matsuda T, Suzuki H, Oishi I, Kani S, Kuroda Y, Komori T, Sasaki A, Watanabe K, Minami Y (2003) The receptor tyrosine kinase Ror2 associates with the melanoma-associated antigen (MAGE) family protein Dlxin-1 and regulates its intracellular distribution. J Biol Chem 278:29057–29064

    Article  PubMed  CAS  Google Scholar 

  • Masiakowski P, Yancopoulos GD (1998) The Wnt receptor CRD domain is also found in MuSK and related orphan receptor tyrosine kinases. Curr Biol 8:R407

    Article  PubMed  CAS  Google Scholar 

  • McCracken AA, Brodsky JL (2003) Evolving questions and paradigm shifts in endoplasmic-reticulum-associated degradation (ERAD). Bioessays 25:868–877

    Article  PubMed  CAS  Google Scholar 

  • Nomi M, Oishi I, Kani S, Suzuki H, Matsuda T, Yoda A, Kitamura M, Itoh K, Takeuchi S, Takeda K, Akira S, Ikeya M, Takada S, Minami Y (2001) Loss of mRor1 enhances the heart and skeletal abnormalities in mRor2-deficient mice: redundant and pleiotropic functions of mRor1 and mRor2 receptor tyrosine kinases. Mol Cell Biol 21:8329–8335

    Article  PubMed  CAS  Google Scholar 

  • Oldridge M, Fortuna AM, Maringa M, Propping P, Mansour S, Pollitt C, DeChiara TM, Kimble RB, Valenzuela DM, Yancopoulos GD, Wilkie AOM (2000) Dominant mutations in ROR2, encoding an orphan receptor tyrosine kinase, cause brachydactyly type B. Nat Genet 24:275–278

    Article  PubMed  CAS  Google Scholar 

  • Patton MA, Afzal AR (2002) Robinow syndrome. J Med Genet 39:305–310

    Article  PubMed  CAS  Google Scholar 

  • Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–8450

    Article  PubMed  CAS  Google Scholar 

  • Robinow M (1993) The Robinow (fetal face) syndrome: a continuing puzzle. Clin Dysmorphol 2:189–198

    Article  PubMed  CAS  Google Scholar 

  • Robinow M, Silverman FN, Smith HD (1969) A newly recognized dwarfing syndrome. Am J Dis Child 117:645–651

    PubMed  CAS  Google Scholar 

  • Romisch K (2004) A cure for traffic jams: small molecule chaperones in the endoplasmic reticulum. Traffic 5:815–820

    Article  PubMed  Google Scholar 

  • Roszmusz E, Patthy A, Trexler M, Patthy L (2001) Localization of disulfide bonds in the frizzled module of Ror1 receptor tyrosine kinase. J Biol Chem 276:18485–18490

    Article  PubMed  CAS  Google Scholar 

  • Schwabe GC, Tinschert S, Buschow C, Meinecke P, Wolff G, Gillessen-Kaesbach G, Oldrige M, Wilkie AOM, Komec R, Mundlos S (2000) Distinct mutations in the receptor tyrosine kinase gene ROR2 cause bracydactyly type B. Am J Hum Genet 67:822–831

    Article  PubMed  CAS  Google Scholar 

  • Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225

    Article  PubMed  CAS  Google Scholar 

  • Schwabe GC, Trepczik B, Suring K, Brieske N, Tucker AS, Sharpe PT, Minami Y, Mundlos S (2004) Ror2 knockout mouse as a model for the developmental pathology of autosomal recessive Robinow syndrome. Dev Dyn 229:400–410

    Article  PubMed  CAS  Google Scholar 

  • Soliman AT, Rajab A, Alsalmi I, Bedair SMA (1998) Recessive Robinow syndrome: with emphasis on endocrine functions. Metabolism 47:1337–1343

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi S, Takeda K, Oishi I, Nomi M, Ikeya M, Itoh K, Tamura S, Ueda T, Hatta T, Otani H et al (2000) Mouse Ror2 receptor tyrosine kinase is required for the heart development and limb formation. Genes Cells 5:71–78

    Article  PubMed  CAS  Google Scholar 

  • Teebi AS (1990) Autosomal recessive Robinow syndrome. Am J Med Genet 35:64–68

    Article  PubMed  CAS  Google Scholar 

  • Toomes C, Bottomley HM, Scott S, Mackey DA, Craig JE, Appukuttan B, Stout JT, Flaxel CJ, Zhang K, Black GC, Fryer A, Downey LM, Inglehearn CF (2004) Spectrum and frequency of FZD4 mutations in familial exudative vitreoretinopathy. Invest Ophthalmol Vis Sci 45:2083–2090

    Article  PubMed  Google Scholar 

  • Tufan F, Cefle K, Turkmen S, Turkmen A, Zorba U, Dursun M, Ozturk S, Palanduz S, Ecder T, Mundlos S, Horn D (2005) Clinical and molecular characterization of two adults with autosomal recessive Robinow syndrome. Am J Med Genet A 136:185–189

    PubMed  Google Scholar 

  • van Bokhoven H, Celli J, Kayserili H, van Beusekom E, Balci S, Brussel W, Skovby F, Kerr B, Percin EF, Akarsu N, Brunner HG (2000) Mutation of the gene encoding the ROR2 tyrosine kinase causes autosomal recessive Robinow syndrome. Nat Genet 25:423–426

    Article  PubMed  CAS  Google Scholar 

  • Wadia RS (1978) Recessively inherited costovertebral segmentation defect with mesomelia and peculiar facies (Covesdem syndrome), a new genetic entity? J Med Genet 15:123–127

    Article  PubMed  CAS  Google Scholar 

  • Welch WJ (2004) Role of quality control pathways in human diseases involving protein misfolding. Semin Cell Dev Biol 15:31–38

    Article  PubMed  CAS  Google Scholar 

  • Xu YK, Nusse R (1998) The Frizzled CRD domain is conserved in diverse proteins including several receptor tyrosine kinases. Curr Biol 8:R405–6

    Article  PubMed  CAS  Google Scholar 

  • Yoda A, Oishi I, Minami Y (2003) Expression and function of the Ror-family receptor tyrosine kinases during development: lessons from genetic analyses of nematodes, mice, and humans. J Recept Signal Transduct Res 23:1–15

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Y. Minami and Department of Biomedical Regulation, Kobe University School of Medicine, Kobe, Japan for providing the mouse pcDNA3-Ror2WT-HA plasmid. Thanks to Vanda Lopes for assistance and Prof. Miguel Seabra (supported by the Wellcome Trust) for reagents and facilities. ARA was supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bassam R. Ali.

Additional information

GenBank accession number ROR2, M97639.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ali, B.R., Jeffery, S., Patel, N. et al. Novel Robinow syndrome causing mutations in the proximal region of the frizzled-like domain of ROR2 are retained in the endoplasmic reticulum. Hum Genet 122, 389–395 (2007). https://doi.org/10.1007/s00439-007-0409-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-007-0409-0

Keywords

Navigation