Skip to main content
Log in

Cold induced Botrytis cinerea enolase (BcEnol-1) functions as a transcriptional regulator and is controlled by cAMP

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Botrytis cinerea is a necrotrophic fungal plant pathogen that can survive, grow and infect crops under cold stress. In an attempt to understand the molecular mechanisms leading to cold tolerance of this phytopathogen, we identified an enolase, BcEnol-1. BcEnol-1 encodes a 48 kDa protein that shows high identity to yeast, Arabidopsis and human enolases (72, 63 and 63%, respectively). Northern analysis confirms that an increase in transcript abundance of BcEnol-1 was observed when B. cinerea mycelium was shifted from 22 to 4°C. In order to understand its regulation during cold stress, BcEnol-1 expression was studied in B. cinerea mutants viz Δbcg1 (mutant of B. cinerea for bcg1), Δbcg3 (mutant of B. cinerea for bcg3) and Δbac (mutant of B. cinerea for adenylate cyclase). A decrease in enolase expression in these mutants was observed during cold stress suggesting enolase activation by a cAMP mediated cascade. Expression of enolase was restored with the exogenous addition of cAMP to the Δbac mutant. Recombinant enolase protein was also found to bind to the promoter elements of transcripts belonging to the Zinc-C6 protein family and calpain like proteases. Based on these results we conclude that enolase from Botrytis is cold responsive, influenced by cAMP and acts putatively as a transcriptional regulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilera J, Randez-Gil F, Prieto JA (2007) Cold response in Saccharomyces cerevisiae: new functions for old mechanisms. FEMS Microbiol Rev 31:327–341

    Article  PubMed  CAS  Google Scholar 

  • Bae W, Xia B, Inouye M, Severinov K (2000) Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc Natl Acad Sci USA 97:7784–7789

    Article  PubMed  CAS  Google Scholar 

  • Beckering CL, Steil L, Weber MH, Völker U, Marahiel MA (2002) Genomewide transcriptional analysis of the cold shock response in Bacillus subtilis. J Bacteriol 184:6395–6402

    Article  PubMed  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  PubMed  Google Scholar 

  • Bergmann S, Rohde M, Chhatwal GS, Hammerschmidt S (2001) Alpha-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol Microbiol 40:1273–1287

    Article  PubMed  CAS  Google Scholar 

  • Bergmann S, Wild D, Diekmann O, Frank R, Bracht D, Chhatwal GS, Hammerschmidt S (2003) Identification of a novel plasmin(ogen)-binding motif in surface displayed alpha-enolase of Streptococcus pneumoniae. Mol Microbiol 49:411–423

    Article  PubMed  CAS  Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890

    Article  PubMed  CAS  Google Scholar 

  • Doehlemann G, Berndt P, Hahn M (2006) Different signaling pathways involving a Gα protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia. Mol Microbiol 59:821–835

    Article  PubMed  CAS  Google Scholar 

  • Droby S, Lichter A (2004) Post-harvest Botrytis infection: etiology, development and management. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer, Dordrecht, pp 349–367

    Chapter  Google Scholar 

  • Dyrløv Bendtsen J, Juhl Jensen L, Blom N, von Heijne G, Brunak S (2004) Feature based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel 17:349–356

    Article  Google Scholar 

  • Edwards SR, Braley R, Chaffin WL (1999) Enolase is present in the cell wall of Saccharomyces cerevisiae. FEMS Microbiol Lett 177:211–216

    Article  PubMed  CAS  Google Scholar 

  • Ehinger S, Schubert W, Bergmann S, Hammerschmidt S, Heinz DW (2004) Plasmin(ogen)-binding α-enolase from Streptococcus pneumoniae: Crystal structure and evaluation of plasmin(ogen) binding Sites. J Mol Biol 343:997–1005

    Article  PubMed  CAS  Google Scholar 

  • Ghosh AK, Steele R, Ray RB (1999) Functional domains of c-myc promoter binding protein 1 involved in transcriptional repression and cell growth regulation. Mol Cell Biol 19:2880–2886

    PubMed  CAS  Google Scholar 

  • Hao D, Ohme-Takagi M, Sarai A (1998) Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J Biol Chem 273:26857–26861

    Article  PubMed  CAS  Google Scholar 

  • Iida H, Yahara I (1985) Yeast heat-shock protein of MR 48,000 is an isoprotein of enolase. Nature 315:688–690

    Article  CAS  Google Scholar 

  • Izawa S, Ikeda K, Ohdate T, Inoue Y (2006) Msn2p/Msn4p-activation is essential for the recovery from freezing stress in yeast. Biochem Biophys Res Commun 352:750–755

    Article  PubMed  Google Scholar 

  • Jong AY, Chen SH, Stins MF, Kim KS, Tuan TL, Huang SH (2003) Binding of Candida albicans enolase to plasmin(ogen) results in enhanced invasion of human brain microvascular endothelial cells. J Med Microbiol 52:615–622

    Article  PubMed  CAS  Google Scholar 

  • Kandror O, Bretschneider N, Kreydin E, Cavalieri D, Goldberg AL (2004) Yeast adapt to near-freezing temperatures by STRE/Msn2, 4-dependent induction of trehalose synthesis and certain molecular chaperones. Mol Cell 13:771–781

    Article  PubMed  CAS  Google Scholar 

  • Klimpel A, Schulze Gronover C, Williamson B, Stewart JA, Tudzynski B (2002) The adenylate cyclase (BAC) in Botrytis cinerea is required for full pathogenicity. Mol Plant Pathol 3:439–450

    Article  CAS  Google Scholar 

  • Lee H, Guo Y, Ohta M, Xiong L, Stevenson B, Zhu JK (2002) LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J 12:2692–2702

    Article  Google Scholar 

  • Lopez-Alemany R, Correc P, Camoin L, Burtin P (1994) Purification of the plasmin receptor from human carcinoma cells and comparison to alpha enolase. Thromb Res 75:371–381

    Article  PubMed  CAS  Google Scholar 

  • MacPherson S, Larochelle M, Turcotte B (2006) A fungal family of transcriptional regulators: the zinc cluster proteins. Microbiol Mol Biol Rev 70:583–604

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Pastor MT, Marchler G, Schuller C, Marchler-Bauer A, Ruis G, Estruch F (1996) The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J 15:2227–2235

    PubMed  CAS  Google Scholar 

  • Nombela C, Gil C, Chaffin WL (2006) Non-conventional protein secretion in yeast. Trends Microbiol 14:15–21

    Article  PubMed  CAS  Google Scholar 

  • Paper JM, Scott-Craig JS, Adhikari DD, Cuomo CA, Walton JD (2007) Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium gramienarum. Proteomics 7:3171–3183

    Article  PubMed  CAS  Google Scholar 

  • Panadero J, Pallotti C, Rodríguez-Vargas S, Randez-Gil F, Prieto JA (2006) A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae. J Biol Chem 281:4638–4645

    Article  PubMed  CAS  Google Scholar 

  • Piper PW, Curran B, Davies MW, Hirst K, Lickheart A, Steward K (1998) Catabolite control of the elevation of PGK mRNA levels by heat shock in Saccharomyces cerevisiae. Mol Microbial 2:353–361

    Article  Google Scholar 

  • Ray R, Miller DM (1991) Cloning and characterization of a human c-myc promoter-binding protein. Mol Cell Biol 11:2154–2161

    PubMed  CAS  Google Scholar 

  • Redlitz A, Fowler BJ, Plow EF, Miles LA (1995) The role of an enolase-related molecule in plasmin(ogen)-binding to cells. Eur J Biochem 227:407–415

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 931–957

    Google Scholar 

  • Schade B, Jansen G, Whiteway M, Entian KD, Thomas DY (2004) Cold adaptation in budding yeast. Mol Biol Cell 15:5492–5502

    Article  PubMed  CAS  Google Scholar 

  • Schjerling P, Holmberg S (1996) Comparative amino acid sequence analysis of the C6 zinc cluster family of transcriptional regulators. Nucleic Acids Res 24:4599–4607

    Article  PubMed  CAS  Google Scholar 

  • Schulze Gronover C, Kasulke D, Tudzynski P, Tudzynski B (2001) The role of G protein alpha subunits in the infection process of the gray mold fungus Botrytis cinerea. Mol Plant Microbe Interact 14:1293–1302

    Article  Google Scholar 

  • Schulze Gronover C, Schorn C, Tudzynski B (2004) Identification of Botrytis cinerea genes up-regulated during infection and controlled by the Gα subunit BCG1 using suppression subtractive hybridization (SSH). Mol Plant Microbe Interact 17:537–546

    Article  PubMed  Google Scholar 

  • Staats M, van Baarlen P, van Kan JAL (2005) Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. Mol Biol Evol 22:333–346

    Article  PubMed  CAS  Google Scholar 

  • Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF (1998) Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci USA 24:14570–14575

    Article  Google Scholar 

  • Subramanian A, Miller DM (2000) Structural analysis of α-enolase. Mapping the functional domains involved in down-regulation of the c-myc protooncogene. J Biol Chem 275:5958–5965

    Article  PubMed  CAS  Google Scholar 

  • Van der Straeten D, Rodrigues-Pousada RA, Goodman HM, Van Montagu M (1997) Plant enolase: gene structure, expression, and evolution. Plant Cell 3:719–735

    Article  Google Scholar 

  • Vanegas G, Quinones W, Carrasco-Lopez C, Concepcion JL, Albericio F, Avilan L (2007) Enolase as a plasminogen binding protein in Leishmania mexicana. Parasitol Res 101:1511–1516

    Article  PubMed  Google Scholar 

  • Weber MH, Klein W, Muller L, Niess UM, Marahiel MA (2001) Role of the Bacillus subtilis fatty acid desaturase in membrane adaptation during cold shock. Mol Microbiol 39:1321–1329

    Article  PubMed  CAS  Google Scholar 

  • Westhead EW (1996) Enolase from yeast and rabbit muscle. In: Neufeld, EF, Ginsburg V (eds) Methods in enzymology, vol 8. Complex Carbohydrates. Academic Press, New York, pp 670–679

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoter. Trends Plant Sci 10:88–94

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Matthias Hahn for providing the Δbcg3 mutant and for critically reading the manuscript. We are also grateful to Amnon Lichter for his inputs during the preparation of the manuscript. This work was supported by the University of Alabama in Huntsville, start-up and Faculty Minigrant Award and BARD award # IS-3947-06 to M.R.D. A.K.·P. was also supported by M.R.D. through BARD funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria R. Davis.

Additional information

Communicated by J. Perez-Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, A.K., Jain, P., Podila, G.K. et al. Cold induced Botrytis cinerea enolase (BcEnol-1) functions as a transcriptional regulator and is controlled by cAMP. Mol Genet Genomics 281, 135–146 (2009). https://doi.org/10.1007/s00438-008-0397-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-008-0397-3

Keywords

Navigation