Skip to main content

Advertisement

Log in

Gill-symbiosis in mytilidae associated with wood fall environments

  • Original Paper
  • Published:
Zoomorphology Aims and scope Submit manuscript

Abstract

Bivalves belonging to the genera Idas and Adipicola were collected from wood fall environments in the west Pacific (Vanuatu islands) between 300 and 890 m depths in 2004. Bacterial symbionts were checked by three complementary techniques: histological and DAPI staining, in situ hybridization (FISH), and TEM. No bacteria were detected inside the gills of the two species, rejecting the endosymbiosis hypothesis. However, results from our study demonstrated the existence of ectosymbionts colonizing microvilli differentiated at the apical surface of the cells constituting the lateral zone of gill filaments. These ectosymbionts are γ-Proteobacteria due to their strong hybridization with the specific probe GAM42; in contrast no hybridization was obtained from either gills or other host tissues by using the oligonucleotide probes specific to α- β- and δ-Proteobacteria. Based on TEM observations, these Gram-negative bacterial symbionts are not methanotrophic due to the lack of concentric stacking of intracellular membranes in their cytoplasm. Such ectosymbionts may represent thioautotrophic bacteria as already described in various Mytilidae from hydrothermal vents and cold seeps. Unfortunately, no phylogenetic analysis could be done in this study to compare their DNA sequence to that of other marine invertebrate symbionts described to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figs. 1–4
Figs. 5–7
Figs. 8–13
Figs. 14–17

Similar content being viewed by others

References

  • Amann RI, Krumholz L, Stahl DA (1990a) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770

    CAS  PubMed  Google Scholar 

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990b) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    CAS  PubMed  Google Scholar 

  • Cary SC, Giovannoni SJ (1993) Transovarial inheritance of endosymbiotic bacteria in clams inhabiting deep-sea hydrothermal vents and cold seeps. Proc Natl Acad Sci USA 90:5695–5699

    Article  CAS  PubMed  Google Scholar 

  • Cavanaugh CM (1994) Microbial symbiosis: patterns of diversity in the marine environment. Am Zool 34:79–89

    Google Scholar 

  • Cavanaugh CM, Gardiner SL, Jones ML, Jannasch HW, Waterburry JB (1981) Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213:340–342

    Article  CAS  PubMed  Google Scholar 

  • Cavanaugh CM, Levering PR, Maki JS, Mitchell R, Lidstrom ME (1987) Symbiosis of methylotrophic bacteria and deep-sea mussels. Nature 325:346–347

    Article  Google Scholar 

  • Childress JJ, Fisher CR, Brooks JM, Kennicut MC, Bidigare R, Anderson A (1986) A methanotrophic marine molluscan symbiosis: mussels fueled by gas. Science 233:1306–1308

    Article  CAS  PubMed  Google Scholar 

  • Dando PR, Southward AJ (1986) Chemoautotrophy in bivalve Molluscs of the genus Thyasira. J Mar Biol Assoc UK 66:915–929

    CAS  Google Scholar 

  • Deming JW, Reysenbach AL, Macko SA, Smith CR (1997) Evidence of microbial basis of a chemoautotrophic invertebrate community at a whale fall on the deep sea-floor: bone-colonizing bacteria and invertebrate endosymbionts. Microsc Res Tech 37:162–170

    Article  CAS  PubMed  Google Scholar 

  • Dias Passos F, de Lima Curi Meserani G, Gros O (2007) Structural and ultrastructural analysis of the gills of the bacterial-bearing bivalve Thyasira falklandica (Smith, 1865). Zoomorphology (in press). doi:10.1007/s00435-007-0034-4

  • Distel DL, Cavanaugh CM (1994) Independent phylogenetic origins of methanotrophic and chemoautotrophic bacterial endosymbioses in marine bivalves. J Bacteriol 176:1932–1938

    CAS  PubMed  Google Scholar 

  • Distel DL, Felbeck H (1987) Endosymbiosis in the lucinid clams Lucinoma aequizonata, Lucinoma annulata and Lucina floridana: a reexamination of the functional morphology of the gills as bacteria-bearing organs. Mar Biol 96:79–86

    Article  Google Scholar 

  • Distel DL, Baco AR, Chuang E, Morrill W, Cavanaugh CM, Smith CR (2000) Do mussels take wooden steps to deep-sea vents? Nature 403:725–726

    Article  CAS  PubMed  Google Scholar 

  • Douglas AE (1994) Symbiotic interactions. Oxford University Press, New York, 148p

  • Dubilier N, Giere O, Distel DL, Cavanaugh CM (1995) Characterization of chemoautotrophic bacterial symbionts in a gutless marine worm (Oligochaeta, Annelida) by phylogenetic 16S rRNA sequence analysis and in situ hybridization. Appl Environ Microbiol 61:2346–2350

    CAS  PubMed  Google Scholar 

  • Dubilier N, Giere O, Amann R (1999) Phylogenetic diversity of bacterial endosymbionts in the gutless marine oligochaete Olavius loisae (Annelida). Mar Ecol Prog Ser 178:271–280

    Article  Google Scholar 

  • Dufour SC (2005) Gill anatomy and relationship to chemoautotrophic symbiont presence in the bivalve family Thyasiridae. Biol Bull 208:200–212

    Article  PubMed  Google Scholar 

  • Duperron S, Nadalig T, Caprais J-C, Sibuet M, Fiala-Médioni A, Amann R, Dubilier N (2005) Dual symbiosis in a Bathymodiolus mussel from a methane seep on the Gabon continental margin (South East Atlantic): 16S rRNA phylogeny and distribution of the symbionts in the gills. Appl Environ Microbiol 71:1694–1700

    Article  CAS  PubMed  Google Scholar 

  • Felbeck H, Childress JJ, Somero GN (1981) Calvin benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats. Nature 293:291–293

    Article  CAS  Google Scholar 

  • Fiala-Médioni A, Métivier C, Herry A, Le Pennec M (1986) Ultrastructure of the gill filament of an hydrothermal vent mytilid Bathymodiolus sp. Mar Biol 92:65–72

    Article  Google Scholar 

  • Fiala-Médioni A, Michalski J-C, Jolles J, Alonso C, Montreuil J (1994) Lysosomic and lysosome activities in the gill of bivalves from deep hydrothermal vents. C R Acad Sci 317:239–244

    Google Scholar 

  • Fisher CR (1990) Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev Aquat Sci 2:399–436

    CAS  Google Scholar 

  • Fisher CR, Brooks JM, Vodenichar JS, Zande JM, Childress JJ, Burke RA (1993) The co-occurrence of methanotrophic and chemoautotrophic sulfur-oxidizing bacterial symbionts in deep-sea mussels. PSZN I Mar Ecol 14:277–289

    Google Scholar 

  • Frenkiel L, Gros O, Mouëza M (1996) Gill ultrastructure in Lucina pectinata (Bivalvia: Lucinidae) with reference to hemoglobin in bivalves with symbiotic sulphur-oxidizing bacteria. Mar Biol 125:511–524

    Google Scholar 

  • Fujiwara Y, Takai K, Uematsu K, Tsuchida S, Hunt JC, Hashimoto J (2000) Phylogenetic characterization of endosymbionts in three hydrothermal vent mussels: influence on host distributions. Mar Ecol Prog Ser 208:147–155

    Article  Google Scholar 

  • Gabe M (1968) Techniques histologiques. Masson, Paris

    Google Scholar 

  • Giere O (1985) Structure and position of bacterial endosymbionts in the gil-filaments of Lucinidae from Bermuda (Mollusca, Bivalvia). Zoomorphology 105:296–301

    Article  Google Scholar 

  • Gros O, Frenkiel L, Mouëza M (1998) Gill filament differentiation and experimental colonization by symbiotic bacteria in aposymbiotic juveniles of Codakia orbicularis (Bivalvia: Lucinidae). Invertebr Reprod Dev 34:219–231

    Google Scholar 

  • Gros O, Darrasse A, Durand P, Frenkiel L, Mouëza M (1996) Environmental transmission of a sulfur-oxidizing bacterial gill endosymbiont in the tropical lucinid bivalve Codakia orbicularis. Appl Environ Microbiol 62:2324–2330

    CAS  PubMed  Google Scholar 

  • Gros O, Liberge M, Felbeck H (2003) Interspecific infection of aposymbiotic juveniles of Codakia orbicularis by various tropical lucinid gill-edosymbionts. Mar Biol 142:57–66

    Google Scholar 

  • Hurtado LA, Mateos M, Lutz RA, Vrijenhoek RC (2003) Coupling of bacterial endosymbiont and host mitochondrial genomes in the hydrothermal vent clam Calyptogena magnifica. Appl Environ Microbiol 69:2058–2064

    Article  CAS  PubMed  Google Scholar 

  • Leschine SB (1995) Cellulose degradation in anaerobic environments. Annu Rev Microbiol 49:399–426

    Article  CAS  PubMed  Google Scholar 

  • Liberge M, Gros O, Frenkiel L (2001) Lysosomes and sulfide-oxidizing bodies in the bacteriocytes of Lucina pectinata, a cytochemical and microanalysis approach. Mar Biol 139:401–409

    Article  CAS  Google Scholar 

  • Madrid VM, Taylor GT, Scantron MI, Chistoserdov AY (2001) Phylogenetic diversity of bacterial and archeal communities in the anoxic zone of the Cariaco basin. Appl Environ Microbiol 67:1663–1674

    Article  CAS  PubMed  Google Scholar 

  • McKiness ZP, McMullin ER, Fisher CR, Cavanaugh CM (2005) A new bathymiodoline mussel symbiosis at the Juan de Fuca hydrothermal vents. Mar Biol. doi:10.1007/s00227-005-0065-7

  • Morse MP, Zardus JD (1997) Bivalvia. In: FW Harrison, AJ Kohn (eds) Microscopic Anatomy of invertebrates. Mollusca II, vol 6A, New York

  • Owen G, McCrae JM (1976) Further studies on the latero-frontal tracts of bivalves. Proc R Soc Lond B 194:527–544

    Article  Google Scholar 

  • Powel MA, Somero GN (1985) Siulfide oxidation occurs in the animal tissue of the gutless clam, Solemya reidi. Biol Bull 169:164–181

    Article  Google Scholar 

  • Reid RGB (1990) Evolutionnary implications of sulphide-oxidizing symbioses in bivalves. In: Morton B (ed) The Bivalvia. Proceedings of a memorial symposium in honour of Sir CM Yonge, Edinburgh, 1986. Hong Kong University Press, Hong Kong, pp 127–140

  • Won YJ, Hallam SJ, O’Mullan D, Pan IL, Buck KR, Vrijenhoek RC (2003) Environmental acquisition of thiotrophic endosymbionts by deep-sea mussels of the genus Bathymodiolus. Appl Environ Microbiol 69:6785–6792

    Article  CAS  PubMed  Google Scholar 

  • Zbinden M, Le Bris N, Gaill F, Compère P (2004) Distribution of bacteria and associated minerals in the gill chamber of the vent shrimp Rimicaris exoculata and related biogeochemical processes. Mar Ecol Prog Ser 284:237–251

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully thank M. Zbinden from UMR 7138 for collecting mytilids during the BOA0 cruise and R. von Cosel from the Museum National d’Histoire Naturelle for determination of the genera. We thank the captain and crew of Alis and the IRD team from Noumea, especially B. Richer de Forges. Part of this work was funded by the GDRE DIWOOD (CNRS SDV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Gros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gros, O., Guibert, J. & Gaill, F. Gill-symbiosis in mytilidae associated with wood fall environments. Zoomorphology 126, 163–172 (2007). https://doi.org/10.1007/s00435-007-0035-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00435-007-0035-3

Keywords

Navigation