Skip to main content

Advertisement

Log in

Tubulocystic renal cell carcinoma: is there a rational reason for targeted therapy using angiogenic inhibition? Analysis of seven cases

  • Original Article
  • Published:
Virchows Archiv Aims and scope Submit manuscript

Abstract

Generally, patients with renal cell carcinoma (RCC) are viewed as potential candidates for antiangiogenic targeted therapy. Tubulocystic RCC (TCRC) is a recently described entity which may behave aggressively, and the rationale for antiangiogenic therapy in this group of renal tumors has yet to be determined. Seven TCRCs and five non-tumor tissue samples from seven patients were subjected to relative expression analysis of mRNA levels of 16 genes involved in three angiogenic signal pathways: (1) VHL/HIF, (2) RTK/mitogen-activated protein kinase (MAPK), and (3) PI3K/Akt/mTOR. Two of them, pathways (2) and (3), are often targeted by antiangiogenic agents. We also determined the mutation and methylation status of the VHL gene. Finally, the levels of vascular endothelial growth factor A (VEGFA), HIF-1α, HIF-2α proteins, and phosphorylated mTOR protein were also determined. The comparison of tumor and control samples revealed no changes of mRNA levels of the following genes: VHL, HIF-1α, HIF-2α, PTEN, Akt2, Akt3, mTOR, VEGFA, KDR, HRas, C-Jun, EGFR, and FGF2. Significantly elevated mRNA level of TP53 was found, while the mRNA levels of FLT1 and C-FOS were reduced in tumor samples. No mutations or methylation in the VHL gene were found. Changes in levels of studied proteins VEGFA, HIF-1α, HIF-2α, and increased phosphorylation of mTOR protein were not found. Three studied angiogenic pathways (VHL/HIF, RTK/MAPK, and PI3K/Akt/mTOR) seem not to be upregulated in TCRC samples, so there appears to be no rationale for a general recommendation of antiangiogenic targeted therapeutic protocols for patients with these tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Eble JN, Sauter G, Epstein JI, Sesterhenn IA (2004) World Health Organization classification of tumours: pathology and genetics of tumours of the urinary system and male genital organs. IARC, Lyon, p 359

    Google Scholar 

  2. Masson P (1956) Tumeurs Humaines Histologie, Diagnostics et Techniques, 2nd edn. Librairie Maloine, Paris, p 1214

    Google Scholar 

  3. Amin M, MacLennan G, Paraf F, Cheville J, Vieillefond A, Radhakrishnan A, Che M, Srigley J, Grignon D (2004) Tubulocystic carcinoma of the kidney: clinicopathologic analysis of 29 cases of distinctive rare subtype of renal carcinoma. Mod Pathol 28(suppl):137A

    Google Scholar 

  4. Amin MB, MacLennan GT, Gupta R, Grignon D, Paraf F, Vieillefond A, Paner GP, Stovsky M, Young AN, Srigley JR, Cheville JC (2009) Tubulocystic carcinoma of the kidney: clinicopathologic analysis of 31 cases of a distinctive rare subtype of renal cell carcinoma. Am J Surg Pathol 33(3):384–392. doi:10.1097/PAS.0b013e3181872d3f

    Article  PubMed  Google Scholar 

  5. Azoulay S, Vieillefond A, Paraf F, Pasquier D, Cussenot O, Callard P, Sibony M (2007) Tubulocystic carcinoma of the kidney: a new entity among renal tumors. Virchows Arch 451(5):905–909. doi:10.1007/s00428-007-0483-7

    Article  PubMed  Google Scholar 

  6. Hora M, Urge T, Eret V, Stránský P, Klečka J, Kreuzberg B, Ferda J, Hyršl L, Breza J, Holečková P, Mego M, Michal M, Petersson F, Hes O (2010) Tubulocystic renal carcinoma: a clinical perspective. World J Urol 29:349–354. doi:10.1007/s00345-010-0614-7

    Article  PubMed  Google Scholar 

  7. Mego M, Sycova-Mila Z, Rejlekova K, Rychly B, Obertova J, Rajec J, Hes O, Mardiak J (2008) Sunitinib in the treatment of tubulocystic carcinoma of the kidney. A case report. Ann Oncol 19(9):1655–1656. doi:10.1093/annonc/mdn408

    Article  PubMed  CAS  Google Scholar 

  8. Osunkoya AO, Young AN, Wang W, Netto GJ, Epstein JI (2009) Comparison of gene expression profiles in tubulocystic carcinoma and collecting duct carcinoma of the kidney. Am J Surg Pathol 33(7):1103–1106. doi:10.1097/PAS.0b013e3181a13e7b

    Article  PubMed  Google Scholar 

  9. Yang XJ, Zhou M, Hes O, Shen S, Li R, Lopez J, Shah RB, Yang Y, Chuang ST, Lin F, Tretiakova MM, Kort EJ, Teh BT (2008) Tubulocystic carcinoma of the kidney: clinicopathologic and molecular characterization. Am J Surg Pathol 32(2):177–187. doi:10.1097/PAS.0b013e318150df1d

    Article  PubMed  Google Scholar 

  10. Zhou M, Yang XJ, Lopez JI, Shah RB, Hes O, Shen SS, Li R, Yang Y, Lin F, Elson P, Sercia L, Magi-Galluzzi C, Tubbs R (2009) Renal tubulocystic carcinoma is closely related to papillary renal cell carcinoma: implications for pathologic classification. Am J Surg Pathol 33(12):1840–1849. doi:10.1097/PAS.0b013e3181be22d1

    Article  PubMed  Google Scholar 

  11. Négrier S, Raymond E (2011) Antiangiogenic treatments and mechanisms of action in renal cell carcinoma. Invest New Drugs 30(4):1791–1801. doi:10.1007/s10637-011-9677-6

    Article  PubMed  Google Scholar 

  12. Glenn ST, Jones CA, Liang P, Kaushik D, Gross KW, Kim HL (2007) Expression profiling of archival renal tumors by quantitative PCR to validate prognostic markers. Biotechniques 43(5):639–640, 642–633, 647

    Google Scholar 

  13. Nyhan MJ, El Mashad SM, O'Donovan TR, Ahmad S, Collins C, Sweeney P, Rogers E, O'Sullivan GC, McKenna SL (2010) VHL genetic alteration in CCRCC does not determine de-regulation of HIF, CAIX, hnRNP A2/B1 and osteopontin. Anal Cell Pathol (Amst) 33(3):121–132. doi:10.3233/ACP-CLO-2010-0541

    CAS  Google Scholar 

  14. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  PubMed  CAS  Google Scholar 

  15. Ruijter JM, Ramakers C, Hoogaars WM, Karlen Y, Bakker O, van den Hoff MJ, Moorman AF (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37(6):e45. doi:10.1093/nar/gkp045

    Article  PubMed  CAS  Google Scholar 

  16. Hes O, Michal M, Síma R, Vanecek T, Brunelli M, Martignoni G, Kuroda N, Alvarado Cabrero I, Perez-Montiel D, Hora M, Urge T, Dvorák M, Jarosová M, Yang X (2008) Renal oncocytoma with and without intravascular extension into the branches of renal vein have the same morphological, immunohistochemical, and genetic features. Virchows Arch 452(2):193–200. doi:10.1007/s00428-007-0541-1

    Article  PubMed  Google Scholar 

  17. Ather MH, Masood N, Siddiqui T (2010) Current management of advanced and metastatic renal cell carcinoma. Urol J 7(1):1–9

    PubMed  Google Scholar 

  18. Hutson TE (2011) Targeted therapies for the treatment of metastatic renal cell carcinoma: clinical evidence. Oncologist 16(Suppl 2):14–22. doi:10.1634/theoncologist.2011-S2-14

    Article  PubMed  Google Scholar 

  19. Rini BI (2009) Vascular endothelial growth factor-targeted therapy in metastatic renal cell carcinoma. Cancer 115(10 Suppl):2306–2312. doi:10.1002/cncr.24227

    Article  PubMed  CAS  Google Scholar 

  20. Cho D, Signoretti S, Regan M, Mier JW, Atkins MB (2007) The role of mammalian target of rapamycin inhibitors in the treatment of advanced renal cancer. Clin Cancer Res 13(2 Pt 2):758s–763s. doi:10.1158/1078-0432.CCR-06-1986

    Article  PubMed  CAS  Google Scholar 

  21. Ohno Y, Izumi M, Tachibana M, Kawamura T, Yoshioka K, Aoyagi T, Ohori M, Namiki K, Sakamoto N, Nakagami Y, Hatano T, Akimoto S, Nishimura T (2008) Characterization and gene expression analysis of novel matched primary and metastatic renal cell carcinoma cell lines. Oncol Rep 20(3):501–509

    PubMed  CAS  Google Scholar 

  22. Stewart GD, O'Mahony FC, Powles T, Riddick AC, Harrison DJ, Faratian D (2011) What can molecular pathology contribute to the management of renal cell carcinoma? Nat Rev Urol 8(5):255–265. doi:10.1038/nrurol.2011.43

    Article  PubMed  CAS  Google Scholar 

  23. Takahashi M, Teh BT, Kanayama HO (2006) Elucidation of the molecular signatures of renal cell carcinoma by gene expression profiling. J Med Invest 53(1–2):9–19

    Article  PubMed  Google Scholar 

  24. Krzyszto O (2008) Pathology of renal tumors in adults. Molecular biology, histopathological diagnosis and prognosis. Pol J Pathol 59(3):129–176

    Google Scholar 

  25. Jones J, Otu H, Spentzos D, Kolia S, Inan M, Beecken WD, Fellbaum C, Gu X, Joseph M, Pantuck AJ, Jonas D, Libermann TA (2005) Gene signatures of progression and metastasis in renal cell cancer. Clin Cancer Res 11(16):5730–5739. doi:10.1158/1078-0432.CCR-04-2225

    Article  PubMed  CAS  Google Scholar 

  26. Schuetz AN, Yin-Goen Q, Amin MB, Moreno CS, Cohen C, Hornsby CD, Yang WL, Petros JA, Issa MM, Pattaras JG, Ogan K, Marshall FF, Young AN (2005) Molecular classification of renal tumors by gene expression profiling. J Mol Diagn 7(2):206–218. doi:10.1016/S1525-1578(10)60547-8

    Article  PubMed  CAS  Google Scholar 

  27. Tickoo S, Westfall D, Reuter V (2010) Tubulocystic carcinoma. In: Amin MB, McKenney JS, Tickoo SK, Paner GP, Shen SS, Velazquez EF, Cubilla AL, Ro JY, Reuter VE (eds) Diagnostic pathology, genitourinary. Amirsys, Inc., Manitoba, pp 92–95

    Google Scholar 

  28. Tonini G, Fratto ME, Imperatori M, Pantano F, Vincenzi B, Santini D (2011) Predictive factors of response to treatment in patients with metastatic renal cell carcinoma: new evidence. Expert Rev Anticancer Ther 11(6):921–930. doi:10.1586/era.11.63

    Article  PubMed  Google Scholar 

  29. Hirota E, Yan L, Tsunoda T, Ashida S, Fujime M, Shuin T, Miki T, Nakamura Y, Katagiri T (2006) Genome-wide gene expression profiles of clear cell renal cell carcinoma: identification of molecular targets for treatment of renal cell carcinoma. Int J Oncol 29(4):799–827

    PubMed  CAS  Google Scholar 

  30. Biró K, Küronya Z (2010) Recent advancements in the treatment of renal cell carcinoma—focus on international guidelines. Magy Onkol 54(4):369–376. doi:10.1556/MOnkol.54.2010.4.11

    Article  PubMed  Google Scholar 

  31. Gnarra JR, Tory K, Weng Y, Schmidt L, Wei MH, Li H, Latif F, Liu S, Chen F, Duh FM (1994) Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet 7(1):85–90. doi:10.1038/ng0594-85

    Article  PubMed  CAS  Google Scholar 

  32. Yao M, Yoshida M, Kishida T, Nakaigawa N, Baba M, Kobayashi K, Miura T, Moriyama M, Nagashima Y, Nakatani Y, Kubota Y, Kondo K (2002) VHL tumor suppressor gene alterations associated with good prognosis in sporadic clear-cell renal carcinoma. J Natl Cancer Inst 94(20):1569–1575

    Article  PubMed  CAS  Google Scholar 

  33. Linehan WM, Zbar B (2004) Focus on kidney cancer. Cancer Cell 6(3):223–228. doi:10.1016/j.ccr.2004.09.006

    Article  PubMed  CAS  Google Scholar 

  34. Cheng L, Williamson SR, Zhang S, Maclennan GT, Montironi R, Lopez-Beltran A (2010) Understanding the molecular genetics of renal cell neoplasia: implications for diagnosis, prognosis and therapy. Expert Rev Anticancer Ther 10(6):843–864. doi:10.1586/era.10.72

    Article  PubMed  CAS  Google Scholar 

  35. Henske EP, Thorner P, Patterson K, Zhuang Z, Bernstein J (1999) Renal cell carcinoma in children with diffuse cystic hyperplasia of the kidneys. Pediatr Dev Pathol 2(3):270–274

    Article  PubMed  CAS  Google Scholar 

  36. Paradis V, Lagha NB, Zeimoura L, Blanchet P, Eschwege P, Ba N, Benoît G, Jardin A, Bedossa P (2000) Expression of vascular endothelial growth factor in renal cell carcinomas. Virchows Arch 436(4):351–356

    Article  PubMed  CAS  Google Scholar 

  37. Takahashi A, Sasaki H, Kim SJ, Tobisu K, Kakizoe T, Tsukamoto T, Kumamoto Y, Sugimura T, Terada M (1994) Markedly increased amounts of messenger RNAs for vascular endothelial growth factor and placenta growth factor in renal cell carcinoma associated with angiogenesis. Cancer Res 54(15):4233–4237

    PubMed  CAS  Google Scholar 

  38. Kaelin WG (2009) Treatment of kidney cancer: insights provided by the VHL tumor-suppressor protein. Cancer 115(10 Suppl):2262–2272. doi:10.1002/cncr.24232

    Article  PubMed  CAS  Google Scholar 

  39. Haase VH (2006) Hypoxia-inducible factors in the kidney. Am J Physiol Renal Physiol 291(2):F271–F281. doi:10.1152/ajprenal.00071.2006

    Article  PubMed  CAS  Google Scholar 

  40. Krieg M, Haas R, Brauch H, Acker T, Flamme I, Plate KH (2000) Up-regulation of hypoxia-inducible factors HIF-1alpha and HIF-2alpha under normoxic conditions in renal carcinoma cells by von Hippel-Lindau tumor suppressor gene loss of function. Oncogene 19(48):5435–5443. doi:10.1038/sj.onc.1203938

    Article  PubMed  CAS  Google Scholar 

  41. Black SM, DeVol JM, Wedgwood S (2008) Regulation of fibroblast growth factor-2 expression in pulmonary arterial smooth muscle cells involves increased reactive oxygen species generation. Am J Physiol Cell Physiol 294(1):C345–C354. doi:10.1152/ajpcell.00216.2007

    Article  PubMed  CAS  Google Scholar 

  42. Bos R, van Diest PJ, de Jong JS, van der Groep P, van der Valk P, van der Wall E (2005) Hypoxia-inducible factor-1alpha is associated with angiogenesis, and expression of bFGF, PDGF-BB, and EGFR in invasive breast cancer. Histopathology 46(1):31–36. doi:10.1111/j.1365-2559.2005.02045.x

    Article  PubMed  CAS  Google Scholar 

  43. Peng XH, Karna P, Cao Z, Jiang BH, Zhou M, Yang L (2006) Cross-talk between epidermal growth factor receptor and hypoxia-inducible factor-1alpha signal pathways increases resistance to apoptosis by up-regulating survivin gene expression. J Biol Chem 281(36):25903–25914. doi:10.1074/jbc.M603414200

    Article  PubMed  CAS  Google Scholar 

  44. Laderoute KR, Calaoagan JM, Gustafson-Brown C, Knapp AM, Li GC, Mendonca HL, Ryan HE, Wang Z, Johnson RS (2002) The response of c-jun/AP-1 to chronic hypoxia is hypoxia-inducible factor 1 alpha dependent. Mol Cell Biol 22(8):2515–2523

    Article  PubMed  CAS  Google Scholar 

  45. Michiels C, Minet E, Michel G, Mottet D, Piret JP, Raes M (2001) HIF-1 and AP-1 cooperate to increase gene expression in hypoxia: role of MAP kinases. IUBMB Life 52(1–2):49–53. doi:10.1080/15216540252774766

    Article  PubMed  CAS  Google Scholar 

  46. Shibuya M (2001) Structure and dual function of vascular endothelial growth factor receptor-1 (Flt-1). Int J Biochem Cell Biol 33(4):409–420

    Article  PubMed  CAS  Google Scholar 

  47. Müller JM, Krauss B, Kaltschmidt C, Baeuerle PA, Rupec RA (1997) Hypoxia induces c-fos transcription via a mitogen-activated protein kinase-dependent pathway. J Biol Chem 272(37):23435–23439

    Article  PubMed  Google Scholar 

  48. Nojima H, Tokunaga C, Eguchi S, Oshiro N, Hidayat S, Yoshino K, Hara K, Tanaka N, Avruch J, Yonezawa K (2003) The mammalian target of rapamycin (mTOR) partner, raptor, binds the mTOR substrates p70 S6 kinase and 4E-BP1 through their TOR signaling (TOS) motif. J Biol Chem 278(18):15461–15464. doi:10.1074/jbc.C200665200

    Article  PubMed  CAS  Google Scholar 

  49. Hadoux J, Vignot S, De La Motte RT (2010) Renal cell carcinoma: focus on safety and efficacy of temsirolimus. Clin Med Insights Oncol 4:143–154. doi:10.4137/cmo.s4482

    Article  PubMed  CAS  Google Scholar 

  50. Cho D, Signoretti S, Dabora S, Regan M, Seeley A, Mariotti M, Youmans A, Polivy A, Mandato L, McDermott D, Stanbridge E, Atkins M (2007) Potential histologic and molecular predictors of response to temsirolimus in patients with advanced renal cell carcinoma. Clin Genitourin Cancer 5(6):379–385

    Article  PubMed  CAS  Google Scholar 

  51. Pantuck AJ, Seligson DB, Klatte T, Yu H, Leppert JT, Moore L, O'Toole T, Gibbons J, Belldegrun AS, Figlin RA (2007) Prognostic relevance of the mTOR pathway in renal cell carcinoma: implications for molecular patient selection for targeted therapy. Cancer 109(11):2257–2267. doi:10.1002/cncr.22677

    Article  PubMed  CAS  Google Scholar 

  52. Masuda A, Kamai T, Abe H, Arai K, Yoshida K (2009) Is Stat3 and/or p53 mRNA expression a prognostic marker for renal cell carcinoma? Biomed Res 30(3):171–176

    Article  PubMed  CAS  Google Scholar 

  53. Ravi R, Mookerjee B, Bhujwalla ZM, Sutter CH, Artemov D, Zeng Q, Dillehay LE, Madan A, Semenza GL, Bedi A (2000) Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 14(1):34–44

    PubMed  CAS  Google Scholar 

  54. MacLennan GT, Farrow GM, Bostwick DG (1997) Low-grade collecting duct carcinoma of the kidney: report of 13 cases of low-grade mucinous tubulocystic renal carcinoma of possible collecting duct origin. Urology 50(5):679–684. doi:10.1016/S0090-4295(97)00335-X

    Article  PubMed  CAS  Google Scholar 

  55. Srigley JR, Eble JN (1998) Collecting duct carcinoma of kidney. Semin Diagn Pathol 15(1):54–67

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Stanislav Kormunda for statistical analysis. The study was supported by Czech Government grant agency: IGA NT 12010–4.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondrej Hes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steiner, P., Hora, M., Stehlik, J. et al. Tubulocystic renal cell carcinoma: is there a rational reason for targeted therapy using angiogenic inhibition? Analysis of seven cases. Virchows Arch 462, 183–192 (2013). https://doi.org/10.1007/s00428-012-1367-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00428-012-1367-z

Keywords

Navigation