Skip to main content
Log in

Characterization of mitochondrial dicarboxylate/tricarboxylate transporters from grape berries

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Grape berries (Vitis vinifera L fruit) exhibit a double-sigmoid pattern of development that results from two successive periods of vacuolar swelling during which the nature of accumulated solutes changes significantly. Throughout the first period, called green or herbaceous stage, berries accumulate high levels of organic acids, mainly malate and tartrate. At the cellular level fruit acidity comprises both metabolism and vacuolar storage. Malic acid compartmentation is critical for optimal functioning of cytosolic enzymes. Therefore, the identification and characterization of the carriers involved in malate transport across sub-cellular compartments is of great importance. The decrease in acid content during grape berry ripening has been mainly associated to mitochondrial malate oxidation. However, no Vitis vinifera mitochondrial carrier involved in malate transport has been reported to date. Here we describe the identification of three V. vinifera mitochondrial dicarboxylate/tricarboxylate carriers (VvDTC1-3) putatively involved in mitochondrial malate, citrate and other di/tricarboxylates transport. The three VvDTCs are very similar, sharing a percentage of identical residues of at least 83 %. Expression analysis of the encoding VvDTC genes in grape berries shows that they are differentially regulated exhibiting a developmental pattern of expression. The simultaneous high expression of both VvDTC2 and VvDTC3 in grape berry mesocarp close to the onset of ripening suggests that these carriers might be involved in the transport of malate into mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AACs:

ADP/ATP carriers

APCs:

ATP-Mg/Pi carriers

CIC:

Mitochondrial citrate carrier

DAF:

Days after flowering

DICs:

Dicarboxylate carriers

DTCs:

Dicarboxylate/tricarboxylate carriers

MCF:

Mitochondrial carrier family

MCs:

Mitochondrial carriers

MSA:

Multiple sequence alignment

OGC:

Oxoglutarate carrier

NCBI:

National Center for Biotechnology Information

References

  • Bisaccia F, Indiveri C, Palmieri F (1985) Purification of re-constitutively active alpha-oxoglutarate carrier from pig heart mitochondria. Biochim Biophys Acta 810:362–369

    Article  PubMed  CAS  Google Scholar 

  • Bisaccia F, De Palma A, Palmieri F (1989) Identification and purification of the tricarboxylate carrier from rat liver mitochondria. Biochim Biophys Acta 977:171–176

    Article  PubMed  CAS  Google Scholar 

  • Bisaccia F, Depalma A, Prezioso G, Palmieri F (1990) Kinetic characterization of the reconstituted tricarboxylate carrier from rat-liver mitochondria. Biochim Biophys Acta 1019:250–256

    Article  PubMed  CAS  Google Scholar 

  • Conde C, Silva P, Fontes N, Dias ACP, Tavares RM, Sousa MJ, Agasse A, Delrot S, Gerós H (2007) Biochemical changes throughout grape berry development and fruit and wine quality. Food 1:1–22

    Google Scholar 

  • Coombe BG (1992) Research on development and ripening on the grape berry. Am J Enol Vitic 43:101–110

    Google Scholar 

  • Deng W, Luo KM, Li ZG, Yang YW (2008) Molecular cloning and characterization of a mitochondrial dicarboxylate/tricarboxylate transporter gene in Citrus junos response to aluminum stress. Mitochondrial DNA 19:376–384

    PubMed  CAS  Google Scholar 

  • Fiermonte G, Walker JE, Palmieri F (1993) Abundant bacterial expression and reconstitution of an intrinsic membrane-transport protein from bovine mitochondria. Biochem J 294:293–299

    PubMed  CAS  Google Scholar 

  • Francisco R (2011) Biochemistry of grape berries: post-genomics approaches to uncover the effects of water deficits on ripening. Ph.D. thesis. Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, pp 83–84

  • Gutha LR, Casassa LF, Harbertson JF, Naidu RA (2010) Modulation of flavonoid biosynthetic pathway genes and anthocyanins due to virus infection in grapevine (Vitis vinifera L.) leaves. BMC Plant Biol 10:2–18

    Article  Google Scholar 

  • Indiveri C, Palmieri F, Bisaccia F, Kramer R (1987) Kinetics of the reconstituted 2-oxoglutarate carrier from bovine heart-mitochondria. Biochim Biophys Acta 890:310–318

    Article  PubMed  CAS  Google Scholar 

  • Kanellis AK, Roubelakis-Angelakis KA (1993) Grape. In: Seymour G, Taylor J, Tucker G (eds) Biochemistry of fruit ripening. Chapman and Hall, London, pp 189–234

    Chapter  Google Scholar 

  • Marobbio CMT, Giannuzzi G, Paradies E, Pierri CL, Palmieri F (2008) alpha-Isopropylmalate, a leucine biosynthesis intermediate in yeast, is transported by the mitochondrial oxalacetate carrier. J Biol Chem 283:28445–28453

    Article  PubMed  CAS  Google Scholar 

  • Martinoia E, Maeshima M, Neuhaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Exp Bot 58:83–102

    Article  PubMed  CAS  Google Scholar 

  • Ollat N, Gaudillère J (2000) Carbon balance in developing grapevine berries. Acta Hort (ISHS) 526:345–350

    Google Scholar 

  • Or E, Baybik J, Sadka A, Saks Y (2000) Isolation of mitochondrial malate dehydrogenase and phosphoenolpyruvate carboxylase cDNA clones from grape berries and analysis of their expression pattern throughout berry development. J Plant Physiol 157:527–534

    Article  CAS  Google Scholar 

  • Palmieri F (1994) Mitochondrial carrier proteins. FEBS Lett 346:48–54

    Article  PubMed  CAS  Google Scholar 

  • Palmieri F (2004) The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Arch 447:689–709

    Article  PubMed  CAS  Google Scholar 

  • Palmieri F (2008) Diseases caused by defects of mitochondrial carriers: a review. Biochim Biophys Acta 1777:564–578

    Article  PubMed  CAS  Google Scholar 

  • Palmieri F, Pierri CL (2010a) Mitochondrial metabolite transport. Essays Biochem 47:37–52

    Article  PubMed  CAS  Google Scholar 

  • Palmieri F, Pierri CL (2010b) Structure and function of mitochondrial carriers - role of the transmembrane helix P and G residues in the gating and transport mechanism. FEBS Lett 584:1931–1939

    Article  PubMed  CAS  Google Scholar 

  • Palmieri F, Indiveri C, Bisaccia F, Iacobazzi V (1995) Mitochondrial metabolite carrier proteins: purification, reconstitution, and transport studies. Methods Enzymol 260:349–369

    Article  PubMed  CAS  Google Scholar 

  • Palmieri F, Agrimi G, Blanco E, Castegna A, di Noia MA, Iacobazzi V, Lasorsa FM, Marobbio CMT, Palmieri L, Scarcia P, Todisco S, Vozza A, Walker J (2006) Identification of mitochondrial carriers in Saccharomyces cerevisiae by transport assay of reconstituted recombinant proteins. Biochim Biophys Acta 1757:1249–1262

    Article  PubMed  CAS  Google Scholar 

  • Palmieri L, Picault N, Arrigoni R, Besin E, Palmieri F, Hodges M (2008) Molecular identification of three Arabidopsis thaliana mitochondrial dicarboxylate carrier isoforms: organ distribution, bacterial expression, reconstitution into liposomes and functional characterization. Biochem J 410:621–629

    Article  PubMed  CAS  Google Scholar 

  • Palmieri F, Pierri CL, De Grassi A, Nunes-Nesi A, Fernie AR (2011) Evolution, structure and function of mitochondrial carriers: a review with new insights. Plant J 66:161–181

    Article  PubMed  CAS  Google Scholar 

  • Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trezeguet V, Lauquin GJ, Brandolin G (2003) Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426:39–44

    Article  PubMed  CAS  Google Scholar 

  • Persson B (2000) Bioinformatics in protein analysis. In: Jolles P, Jornall H (eds) Proteomics in functional genomics: Protein structure analysis. Birkhäuser, Basel, pp 215–231

    Chapter  Google Scholar 

  • Picault N, Palmieri L, Pisano I, Hodges M, Palmieri F (2002) Identification of a novel transporter for dicarboxylates and tricarboxylates in plant mitochondria. Bacterial expression, reconstitution, functional characterization, and tissue distribution. J Biol Chem 277:24204–24211

    Article  PubMed  CAS  Google Scholar 

  • Picault N, Hodges M, Palmieri L, Palmieri F (2004) The growing family of mitochondrial carriers in Arabidopsis. Trends Plant Sci 9:138–146

    Article  PubMed  CAS  Google Scholar 

  • Pierri CL, Parisi G, Porcelli V (2010) Computational approaches for protein function prediction: a combined strategy from multiple sequence alignment to molecular docking-based virtual screening. Biochim Biophys Acta 1804:1695–1712

    Article  PubMed  CAS  Google Scholar 

  • Reid KE, Olsson N, Schlosser J, Peng F, Lund ST (2006) An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development. BMC Plant Biol 6:1–11

    Article  Google Scholar 

  • Runswick MJ, Walker JE, Bisaccia F, Iacobazzi V, Palmieri F (1990) Sequence of the bovine 2-oxoglutarate malate carrier protein - structural relationship to other mitochondrial transport proteins. Biochemistry 29:11033–11040

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method - a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sweetman C, Deluc LG, Cramer GR, Ford CM, Soole KL (2009) Regulation of malate metabolism in grape berry and other developing fruits. Phytochemistry 70:1329–1344

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Taureilles-Saurel C, Romieu CG, Robin JP, Flanzy C (1995) Grape (Vitis vinifera L.) malate dehydrogenase. II. Characterization of the major mitochondrial and cytosolic isoforms and their role in ripening. Am J Enol Vitic 46:29–36

    CAS  Google Scholar 

  • Terrier N, Romieu C (2001) Grape berry acidity. In: Roubelakis-Angelakis KA (ed) Molecular biology and biotechnology of grapevine. Kluwer Academic Publishers, Dordrecht, pp 37–57

    Google Scholar 

  • Terrier N, Sauvage FX, Ageorges A, Romieu C (2001) Changes in acidity and in proton transport at the tonoplast of grape berries during development. Planta 213:20–28

    Article  PubMed  CAS  Google Scholar 

  • Todisco S, Agrimi G, Castegna A, Palmieri F (2006) Identification of the mitochondrial NAD+ transporter in Saccharomyces cerevisiae. J Biol Chem 281:1524–1531

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by ‘Fundação para a Ciência e a Tecnologia’ (FCT) of ‘Ministério da Ciência, Tecnologia e do Ensino Superior’ (Portugal) through grant PTDC/AGR-ALI/100636/2008, by Fondazione Cassa di Risparmio di Puglia and by the Italian Human ProteomeNet No. RBRN07BMCT_009. Ana Regalado acknowledges FCT for the financial support through fellow SFRH/BPD/34986/2007. We would like to thank Professor Ferdinando Palmieri for generously providing his laboratory to carry out part of the experimental work. Finally, we would like to thank Prof. Charles Romieu for his scientific advice on grape berry developmental characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennaro Agrimi.

Additional information

Ana Regalado and Ciro Leonardo Pierri contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Regalado, A., Pierri, C.L., Bitetto, M. et al. Characterization of mitochondrial dicarboxylate/tricarboxylate transporters from grape berries. Planta 237, 693–703 (2013). https://doi.org/10.1007/s00425-012-1786-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1786-8

Keywords

Navigation