Skip to main content
Log in

Characterization of a flavonol 3-O-methyltransferase in the trichomes of the wild tomato species Solanum habrochaites

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The glandular trichomes of the wild tomato species Solanum habrochaites accumulate the polymethylated flavonol aglycones, 3,7,3′-O-methyl myricetin, 3,7,3′,5′-O-methyl myricetin, and 3,7,3′,4′,5′-O-methyl myricetin. Partially methylated flavonol aglycones and partially methylated flavonol glycones containing a methyl group at the 3 position have been previously reported from a variety of plants. The 3-O-methyltransferase (3-OMT) activity has been previously partially purified from plants, but a gene transcript encoding an enzyme capable of methylating flavonols at the 3 position has not yet been identified, nor have been such proteins purified and characterized. We previously identified two gene transcripts expressed in the glandular trichomes of S. habrochaites and showed that they encode enzymes capable of methylating myricetin at the 3′ and 5′ and the 7 and 4′ positions, respectively. Here we report the identification of gene transcripts expressed in S. lycopersicum (cultivated tomato) and in S. habrochaites glandular trichomes that encode enzymes capable of methylating myricetin, and its partially methylated derivatives exclusively at the 3 position. The S. habrochaites gene transcript is preferentially expressed in the glandular trichomes and it encodes a protein with high similarity to the S. habrochaites, 3′/5′ O-methyltransferase which is also present in glandular trichomes. Phylogenic analysis suggests that the 3-OMT activity has probably evolved from an ancestral 3′/5′ methyltransferase activity. The discovery and characterization of 3-OMT provides a more complete picture of the series of reactions leading to highly methylated myricetin compounds in S. habrochaites glandular trichomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bombarely A, Menda N, Tecle IY, Buels RM, Strickler S, Fischer-York T, Pujar A, Leto J, Gosselin J, Mueller LA (2011) The sol genomics network (solgenomics.net): growing tomatoes using Perl. Nucleic Acids Res 39:D1149–D1155

    Article  PubMed  Google Scholar 

  • Braca A, Bilia AR, Mendez J, Morelli I (2001) Myricetin glycosides from Licania densiflora. Fitoterapia 72:182–185

    Article  PubMed  CAS  Google Scholar 

  • Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52:98–111

    Article  PubMed  CAS  Google Scholar 

  • Castillo-Munoz N, Gomez-Alonso S, Garcia-Romero E, Hermosin-Gutierrez I (2010) Flavonol profiles of Vitis vinifera white grape cultivars. J Food Comp Anal 23:699–705

    Article  CAS  Google Scholar 

  • Collins FW, Deluca V, Ibrahim RK, Voirin B, Jay M (1981) Polymethylated flavonols of Chrysosplenium americanum. 1. identification and enzymatic synthesis. J Res Biosciences 36:730–736

    Google Scholar 

  • Cooper JE (2004) Multiple responses of rhizobia to flavonoids during legume root infection. Adv Botanical Res Incorporating Adv Plant Pathol 41(41):1–62

    Article  CAS  Google Scholar 

  • D’Auria JC, Chen F, Pichersky E (2002) Characterization of an acyltransferase capable of synthesizing benzylbenzoate and other volatile esters in flowers and damaged leaves of Clarkia breweri. Plant Physiol 130:466–476

    Article  PubMed  Google Scholar 

  • De Luca V, Ibrahim RK (1985) Enzymatic synthesis of polymethylated flavonols in Chrysosplenium americanum. 2. substrate interaction and product inhibition studies of flavonol 3, 6, and 4′-O-methyltransferases. Arch Biochem Biophys 238:606–618

    Article  PubMed  Google Scholar 

  • Dudareva N, Pichersky E (2008) Metabolic engineering of plant volatiles. Curr Opin Biotechnol 19:181–189

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies—an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Ferrer JL, Austin MB, Stewart C Jr, Noe JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem 46:356–370

    Article  PubMed  CAS  Google Scholar 

  • Gerats AGM, Wallroth M, Donkerkoopman W, Groot SPC, Schram AW (1983) The genetic control of the enzyme UDP-glucose 3-O-flavonoid glucosyltransferase in flowers of Petunia hybrida. Theoretical Appl Genetics 65:349–352

    CAS  Google Scholar 

  • Greenham J, Harbone JB, Williams CA (2003) Identification of lipophilic flavones and flavonols by comparative HPLC, TLC and UV spectral analysis. Phytochem Anal 14:100–118

    Article  PubMed  CAS  Google Scholar 

  • Griesser M, Vitzthum F, Fink B, Bellido ML, Raasch C, Munoz-Blanco J, Schwab W (2008) Multi-substrate flavonol O-glucosyltransferases from strawberry (Fragariaxananassa) achene and receptacle. J Exp Bot 59:2611–2625

    Article  PubMed  CAS  Google Scholar 

  • Huang TS, Anzellotti D, Dedaldechamp F, Ibrahim RK (2004) Partial purification, kinetic analysis, and amino acid sequence information of a flavonol 3-O-methyltransferase from Serratula tinctoria. Plant Physiol 134:1366–1376

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim RK (2005) A forty-year journey in plant research: original contributions to flavonoid biochemistry. Canadian J Bot 83:433–450

    Article  CAS  Google Scholar 

  • Ibrahim RK, Deluca V, Khouri H, Latchinian L, Brisson L, Charest PM (1987) Enzymology and compartmentation of polymethylated flavonol glucosides in Chrysosplenium americanum. Phytochem 26:1237–1245

    Article  Google Scholar 

  • Jez JM, Noel JP (2000) Mechanism of chalcone synthase—pK(a) of the catalytic cysteine and the role of the conserved histidine in a plant polyketide synthase. J Biol Chem 275:39640–39646

    Article  PubMed  CAS  Google Scholar 

  • Kumari GNK, Rao LJM, Rao NSP (1984) Myricetin methyl ethers from Solanum Pubescens. Phytochem 23:2701–2702

    Article  CAS  Google Scholar 

  • Lee TH, Qiu F, Waller GR, Chou CH (2000) Three new flavonol galloylglycosides from leaves of Acacia confusa. J Nat Prod 63:710–712

    Article  PubMed  CAS  Google Scholar 

  • Martens S, Preuss A, Matern U (2010) Multifunctional flavonoid dioxygenases: flavonol and anthocyanin biosynthesis in Arabidopsis thaliana L. Phytochem 71:1040–1049

    Article  CAS  Google Scholar 

  • McDowell RT, Kapteyn J, Schmidt A, Li C, Kang J-H, Descour A, Shi F, Larson M, Schilmiller A, An L, Howe GA, Jones AD, Pichersky E, Soderlund CA, Gang DR (2011) Comparative functional genomic analysis of Solanum glandular trichome types. Plant Physiol 155:524–539

    Article  PubMed  CAS  Google Scholar 

  • Modolo LV, Li L, Pan H, Blount JW, Dixon RA, Wang X (2009) Crystal structures of glycosyltransferase UGT78G1 reveal the molecular basis for glycosylation and deglycosylation of (iso)flavonoids. J Mol Biol 392:1292–1302

    Article  PubMed  CAS  Google Scholar 

  • Motta LB, Kraus JE, Salatino A, Salatino MLF (2005) Distribution of metabolites in galled and non-galled foliar tissues of Tibouchina pulchra. Biochem Syst Ecol 33:971–981

    Article  CAS  Google Scholar 

  • Ono E, Homma Y, Horikawa M, Kunikane-Doi S, Imai H, Takahashi S, Kawai Y, Ishiguro M, Fukui Y, Nakayama T (2010) Functional differentiation of the glycosyltransferases that contribute to the chemical diversity of bioactive flavonol glycosides in grapevines (Vitis vinifera). Plant Cell 22:2856–2871

    Article  PubMed  CAS  Google Scholar 

  • Owens DK, McIntosh CA (2009) Identification, recombinant expression, and biochemical characterization of a flavonol 3-O-glucosyltransferase clone from Citrus paradisi. Phytochem 70:1382–1391

    Article  CAS  Google Scholar 

  • Pichersky E, Lewinsohn E (2011) Convergent evolution in plant specialized metabolism. Annu Rev Plant Biol 62(62):549–566

    Article  PubMed  CAS  Google Scholar 

  • Pollastri S, Tattini M (2011) Flavonols: old compounds for old roles. Ann Bot 108:1225–1233

    Article  PubMed  CAS  Google Scholar 

  • Pourcel L, Routaboul JM, Kerhoas L, Caboche M, Lepiniec L, Debeaujon I (2005) Transparent testa10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in arabidopsis seed coat. Plant Cell 17:2966–2980

    Article  PubMed  CAS  Google Scholar 

  • Prescott AG, John P (1996) Dioxygenases: molecular structure and role in plant metabolism. Annual Rev Plant Physiol Plant Mol Biol 47:245–271

    Article  CAS  Google Scholar 

  • Ringli C, Bigler L, Kuhn BM, Leiber R-M, Diet A, Santelia D, Frey B, Pollmann S, Klein M (2008) The modified flavonol glycosylation profile in the Arabidopsis rol1 mutants results in alterations in plant growth and cell shape formation. Plant Cell 20:1470–1481

    Article  PubMed  CAS  Google Scholar 

  • Roda AL, Oldham NJ, Svatos A, Baldwin IT (2003) Allometric analysis of the induced flavonols on the leaf surface of wild tobacco (Nicotiana attenuata). Phytochem 62:527–536

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Schmidt A, Li C, Shi F, Jones AD, Pichersky E (2011) Polymethylated myricetin in trichomes of the wild tomato species Solanum habrochaites and characterization of trichome-specific 3′/5′- and 7/4′-myricetin o-methyltransferases. Plant Physiol 155:1999–2009

    Article  PubMed  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative Ct method. Nat Protoc 3:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Stevens JF, Hart HT, Wollenweber E (1995) The systematic and evolutionary significance of exudate flavonoids in Aeonium. Phytochem 39:805–813

    Article  CAS  Google Scholar 

  • Stevens JF, Hart H, Elema ET, Bolck A (1996) Flavonoid variation in Eurasian Sedum and Sempervivum. Phytochem 41:503–512

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  • Tohge T, Ramos MS, Nunes-Nesi A, Mutwil M, Giavalisco P, Steinhauser D, Schellenberg M, Willmitzer L, Persson S, Martinoia E, Fernie AR (2011) Toward the storage metabolome: profiling the barley vacuole. Plant Physiol 157:1469–1482

    Article  PubMed  CAS  Google Scholar 

  • Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol 7:581–591

    Article  PubMed  CAS  Google Scholar 

  • Vogt T, Jones P (2000) Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci 5:380–386

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Pichersky E (1999) Identification of specific residues involved in substrate discrimination in two plant O-methyltransferases. Arch Biochem Biophys 368:172–180

    Article  PubMed  CAS  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. a colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  PubMed  CAS  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166

    Google Scholar 

Download references

Acknowledgments

We thank Drs. Robert Last, Anthony Schilmiller, and Jeongwoon Kim for discussion and help in the analysis of tomato genomic and transcript sequences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eran Pichersky.

Additional information

This work was supported by National Science Foundation Awards DBI-0604336 and IOS-1025636.

A contribution to the Special Issue on Metabolic Plant Biology.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 220 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, A., Li, C., Daniel Jones, A. et al. Characterization of a flavonol 3-O-methyltransferase in the trichomes of the wild tomato species Solanum habrochaites . Planta 236, 839–849 (2012). https://doi.org/10.1007/s00425-012-1676-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1676-0

Keywords

Navigation