Skip to main content

Advertisement

Log in

The impact of acute and chronic catecholamines on respiratory responses to hypoxic stress in the rat

  • Integrative Physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Chronic catecholamine production is associated with desensitisation and down-regulation of adrenergic receptors and occurs in conditions, such as heart failure and myocardial infarction. The effects of further acute adrenergic stimulation, which may occur during exercise, and their subsequent effects on chemosensitivity and ventilation are unclear. Chronic isoprenaline (ISO) increased ventilation by 50 % (P < 0.05) yet the sensitivity to graded hypoxia was preserved. Acute noradrenaline (NA) in control animals led to a doubling of ventilation in hyperoxia (P < 0.001), and this difference was preserved in graded hypoxia (P < 0.001). Yet, combination of NA + ISO did not increase ventilation beyond ISO at baseline or in hypoxia. ISO, NA, and NA + ISO all induced a metabolic acidosis (P < 0.05) with enhanced ventilation in partial compensation. Carotid sinus nerve (CSN) section led to a partial loss of catecholamine-induced augmentation in ventilation (P < 0.05), yet direct recording from CSN in vitro suggests catecholamine is inhibitory for CSN discharge. These observations suggest that chronic catecholamine exposure may result in decreased exercise performance as a direct consequence of the hyperpnea to compensate for an increased metabolic rate coupled with acidosis and leading to increased central chemosensitivity. A limited contribution from peripheral chemoreceptors was noted but was not a consequence of catecholamine stimulation of the carotid body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CON:

Control

CSF:

Cerebrospinal fluid

CSN:

Carotid sinus nerve

CSNX:

Carotid sinus nerve transection

HF:

Heart failure

ISO:

Isoprenaline

KH:

Krebs–Henseleit buffer

NA:

Noradrenaline

PaCO2 :

Partial pressure arterial carbon dioxide

PaO2 :

Partial pressure arterial oxygen

References

  1. Agostoni P, Apostolo A, Cattadori G, Salvioni E, Berna G, Antonioli L, Vignati C, Schina M, Sciomer S, Bussotti M, Palermo P, Fiorentini C, Contini M (2010) Effects of β-blockers on ventilation efficiency in heart failure. Am Heart J 159:1067–1073

    Article  PubMed  CAS  Google Scholar 

  2. Amann M, Blain GM, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA (2010) Group III and IV muscel afferents contribute to ventilator and cardiovascular response to rhythmic exercise in humans. J Appl Physiol 109:966–976

    Article  PubMed  Google Scholar 

  3. Benjamin IJ, Jalil JE, Tan LB, Cho K, Weber KT, Clark WA (1989) Isoproterenol-induced myocardial fibrosis in relation to myocyte necrosis. Circ Res 65:657–670

    Article  PubMed  CAS  Google Scholar 

  4. Bin Jaliah I, Maskell PD, Kumar P (2005) Carbon dioxide sensitivity during hypoglycaemia-induced elevated metabolism in the anaesthetised rat. J Physiol 563:883–893

    Article  PubMed  CAS  Google Scholar 

  5. Bisgard GE, Forster HV, Byrnes B, Stanek K, Klein J, Manohar M (1978) Cerebrospinal fluid acid–base balance during muscular exercise. J Appl Physiol 45:94–101

    PubMed  CAS  Google Scholar 

  6. Butland RJA, Pang JA, Geddes DM (1982) The selectivity of the β-adrenoceptor for ventilation in man. Br J Clin Pharmacol 14:707–711

    Article  PubMed  CAS  Google Scholar 

  7. Calbet JAL (2003) Chronic hypoxia increases blood pressure and noradrenaline spillover in healthy humans. J Physiol 551:379–338

    Article  PubMed  CAS  Google Scholar 

  8. Chang HY, Klein RM, Kunos G (1982) Selective desensitisation of cardiac beta-adrenoceptors by prolonged in vivo infusion of catecholamines in rats. J Pharmacol Exp Therap 221:784–789

    CAS  Google Scholar 

  9. Day TA, Wilson RJA (2009) A negative interaction between brainstem and peripheral respiratory chemoreceptors modulates peripheral chemoreflex magnitude. J Physiol 587:883–896

    Article  PubMed  CAS  Google Scholar 

  10. Ding Y, Li YL, Schultz HD (2011) Role of blood flow in carotid body chemoreflex function in heart failure. J Physiol 89:245–258

    Article  Google Scholar 

  11. Eldridge FL, Gill-Kumar P (1980) Mechanisms of hyperpnea by isoproterenol. Resp Physiol 40:349–363

    Article  CAS  Google Scholar 

  12. Eldridge FL, Millhorn DE, Kiley JP, Waldrop TG (1985) Stimulation by central command of locomotion, respiration and circulation during exercise. Respir Physiol 59:313–337

    Article  PubMed  CAS  Google Scholar 

  13. Folgering H, Ponte J, Sadig T (1982) Adrenergic mechanisms and chemoreception in the carotid body of the cat and rabbit. J Physiol 325:1–21

    PubMed  CAS  Google Scholar 

  14. Forester HV, Haouzi P, Dempsey JA (2012) Control of breathing during exercise. Comprehensive Physiol 2:743–777

    Google Scholar 

  15. Gademan MG, Swenne CA, Verwey HF, van der Laarse A, Maan AC, van de Vooren H, van Pelt J, van Exel HJ, Lucas CM, Cleuren GV, Somer S, Schalij MJ, van der Wall EE (2007) Effect of exercise training on autonomic derangement and neurohumoral activation in chronic heart failure. J Card Fail 13:294–303

    Article  PubMed  Google Scholar 

  16. Gao F, de Beer VJ, Hoekstra M, Xiao C, Duncker DJ, Merkus D (2010) Both beta1- and beta2-adrenoceptors contribute to feedforward coronary resistance vessel dilation during exercise. Am J Physiol 298:H921–H929

    Article  CAS  Google Scholar 

  17. Ghimire LV, Kohli U, Li C, Sofowora GG, Muskat M, Friedman EA, Solus GF, Wood AJ, Stein CM, Kurnik D (2012) Catecholamine pathway gene variation is associated with norepinephrine and epinephrine concentrations at rest and after exercise. Pharmacogenet Genomics 22:254–260

    Article  PubMed  CAS  Google Scholar 

  18. Hambrecht R, Niebauer J, Fiehn E, Kälberer B, Offner B, Hauer K, Riede U, Schlierf G, Kübler W, Schuler G (1995) Physical training in patients with stable chronic heart failure: effects on cardiorespiratory fitness and ultrastructural abnormalities of leg muscles. J Am Coll Cardiol 25:1239–1249

    Article  PubMed  CAS  Google Scholar 

  19. Hasselbalch SG, Knudsen GM, Jakobsen J, Hageman LP, Holm S, Paulson OB (1995) Blood–brain barrier permeability of glucose and ketone bodies during short-term starvation in humans. Am J Physiol 268:E1161–E1166

    PubMed  CAS  Google Scholar 

  20. Heather LC, Catchpole AF, Stuckey DJ, Cole MA, Carr CA, Clarke KA (2009) Isoproterenol induces in vivo functional and metabolic abnormalities; similar to those found in the infracted rat heart. J Physiol Pharmacol 60:31–39

    PubMed  CAS  Google Scholar 

  21. Heathers GP, Al-Muhtaseb N, Brunt RV (1985) The effect of adrenergic agents on the activities of glycerol-3-phosphate acyltransferase and triacylglycerol lipase in the isolated perfused rate heart. J Mol Cell Cardiol 17:785–796

    Article  PubMed  CAS  Google Scholar 

  22. Heistad DD, Wheeler RC, Mark AL, Schmid PG, Abboud FM (1972) Effects of adrenergic stimulation on ventilation in man. J Clin Invest 51:1469–1475

    Article  PubMed  CAS  Google Scholar 

  23. Hu A, Jiao X, Gao E, Koch WJ, Sharifi-Azad S, Grunwald Z, Ma XL, Sun JZ (2006) Chronic β-adrenergic receptor stimulation induces cardiac apoptosis and aggravates myocardial ischemia/reperfusion injury by provoking inducible nitric-oxide synthase-mediated nitrative stress. J Pharmacol Exp Therap 318:469–475

    Article  CAS  Google Scholar 

  24. Kjällquist A, Messester K, Siesjö BK (1970) The in vivo CO2 buffer capacity of rat brain tissue under carbonic anhydrase inhibition. Acta Physiol Scanda 78:94–102

    Article  Google Scholar 

  25. Krezemiński K, Kruk B, Wόjcik-Ziόlkowska E, Kozera J, Cybulski G, Nazar K (2002) Effect of static handgrip on plasma adrenomedullin concentration in patients with heart failure and in healthy subjects. J Physiol Pharmacol 53:199–210

    Google Scholar 

  26. Laing ST, Gluckman TJ, Weinberg KM, Lahiri MK, Ng J, Goldberger JJ (2011) Autonomic effects of exercise-based cardiac rehabilitation. J Cardiopulmon Rehabil Prev 31:87–91

    Google Scholar 

  27. Li YL, Ding Y, Agnew C, Schiltz HD (2008) Exercise training improves peripheral chemoreflex function in heart failure rabbits. J Appl Physiol 105:782–790

    Article  PubMed  CAS  Google Scholar 

  28. Lommi J, Koskinen P, Näveri H, Härkönen M, Kupair M (1997) Heart failure ketosis J Intern Med 242:231–238

    CAS  Google Scholar 

  29. Marshall JM, Metcalfe JD (1988) Analysis of the cardiovascular changes induced in the rat by graded levels of systemic hypoxia. J Physiol 407:385–403

    PubMed  CAS  Google Scholar 

  30. Martin BJ, Weil JV, Sparks KE, McCullough RE, Grover RF (1978) Exercise ventilation correlates positively with ventilator chemoresponsiveness. J Appl Physiol 45:557–564

    PubMed  CAS  Google Scholar 

  31. Maskell PD, Rusius CJ, Whitehead KJ, Kumar P (2006) Adrenaline increases carotid body CO2 sensitivity: an in vivo study. Adv Exp Med Biol 580:245

    Article  PubMed  CAS  Google Scholar 

  32. McLoughlin P, Linton RA, Band DM (1995) Effects of potassium and lactic acid on chemoreceptor discharge in anaesthetized cats. Respir Physiol 99:303–312

    Article  PubMed  CAS  Google Scholar 

  33. Miki K, Maekura R, Hiraga T, Hashimoto H, Kitada S, Miki M, Yoshimura K, Tateishi Y, Fushitani K, Motone M (2009) Acidosis and raised norepinephrine levels are associated with exercise dyspnoea in idiopathic pulmonary fibrosis. Respirology 14:1020–1026

    Article  PubMed  Google Scholar 

  34. Minatoguchi S, Uno Y, Seishima M, Koshiji M, Kakami M, Yokoyama H, Ito H, Fujiwara H (1997) Effect of adrenaline infusion on plasma lipids and noradrenaline levels in rabbits with adriamycin-induced cardiomyopathy. Clin Exp Pharmacol Physiol 24:477–480

    Article  PubMed  CAS  Google Scholar 

  35. Olesen J, Hougard K, Hertz M (1978) Isoproterenol and propranolol: ability to cross the blood–brain barrier and effects on cerebral circulation in man. Stroke 9:344–349

    Article  PubMed  CAS  Google Scholar 

  36. Olson TP, Joyner MJ, Johnson BD (2010) Influence of locomotor muscle metaboreceptor stimulation on the ventilator response to exercise in heart failure. Circ Heart Fail 3:212–219

    Article  PubMed  Google Scholar 

  37. Orchard CH, Chakrabarti MK, Sykes MK (1982) Cardiorespiratory responses to an iv infusion of dobutamine in the intact anaesthetised dog. Br J Anaesth 54:673–679

    Article  PubMed  CAS  Google Scholar 

  38. Pathak A, Velez-Roa S, Xhaёt O, Najem B, van de Borne P (2006) Dose-dependent effect of dobutamine on chemoreflex activity in healthy volunteers. Br J Clin Pharmacol 62:272–279

    Article  PubMed  CAS  Google Scholar 

  39. Pepper DR, Landauer RC, Kumar P (1994) Postnatal development of CO2–O2 interaction in the rat carotid body in vitro. J Physiol 485:531–541

    Google Scholar 

  40. Pifferi F, Tremblay S, Croteau E, Fortier M, Tremblay-Mercier J, Lecomte R, Cunnane SC (2011) Mild experimental ketosis increases brain uptake of 11C-acetoacetate and 18 F-fluorodeoxyglucose: a dual tracer PET imaging study in rats. Nutr Neurosci 14:51–58

    Article  PubMed  CAS  Google Scholar 

  41. Pizarro J, Warner MM, Ryan M, Mitchell GS, Bisgard GE (1992) Intracarotid norepinephrine infusions inhibit ventilation in goats. Resp Phys 90:299–310

    Article  CAS  Google Scholar 

  42. Puchowicz MA, Xu K, Sun X, Ivy A, Emancipator D, LaManna JC (2007) Diet-induced ketosis increases capillary density without altered blood flow in rat brain. Am J Physiol 292:E1607–E1615

    CAS  Google Scholar 

  43. Ryan ML, Hedrick MS, Pizarro J, Bisgard GE (1993) Carotid body noradrenergic sensitivity in ventilator acclimatization to hypoxia. Resp Physiol 92:77–90

    Article  CAS  Google Scholar 

  44. Sabharwal R, Coote JH, Johns EJ, Egginton S (2004) Effect of hypothermia on baroreflex control of heart rate and renal sympathetic nerve activity in anaesthetised rats. J Physiol 557:247–259

    Article  PubMed  CAS  Google Scholar 

  45. Schneider DA, Kamimori GH, Wu SY, McEniery MT, Solomon C (1995) Plasma catecholamine and ventilatory responses to cycling after propranolol treatment. Med Sci Sports Exerc 27:1616–1620

    PubMed  CAS  Google Scholar 

  46. Scott AC, Davies LC, Coats AJ, Piepoli M (2002) Relationship of skeletal muscle metaboreceptors in the upper and lower limbs with the respiratory control in patients with heart failure. Clin Sci 102:23–30

    Article  PubMed  Google Scholar 

  47. Skinner TL, Jenkins DG, Taaffe DR, Leveritt MD, Coombes JS (2012) Coinciding exercise with peak serum caffeine does not improve cycling performance. J Sci Med Sport. doi:10.1016/j.jsams.2012.04.004

  48. Tan ZY, Lu Y, Whiteis CA, Benson CJ, Chapleau MW, Abboud FM (2007) Acid-sensing ion channels contribute to transduction of extracellular acidosis in rat carotid body glomus cells. Circ Res 101:1009–1019

    Article  PubMed  CAS  Google Scholar 

  49. Wensel R, Francis DP, Georgiadou P, Scott A, Genth-Zotz S, Anker SD, Coats AJ, Piepoli MF (2005) Exercise hyperventilation in chronic heart failure is not caused by systemic lactic acidosis. Eur J Heart Fail 7:1105–1111

    Article  PubMed  Google Scholar 

  50. Wilmore DW, Long JM, Mason AD Jr, Skreen RW, Pruitt BA Jr (1974) Catecholamines: mediator of the hypermetabolic response to thermal injury. Ann Surg 180:653–669

    Article  PubMed  CAS  Google Scholar 

  51. Zhang T, He J, Xu C, Zu L, Jiang H, Pu S, Guo X, Xu G (2009) Mechanisms of metformin inhibiting lipolytic response to isoproterenol in primary rat adipocytes. J Mol Endocrinol 42:57–66

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported financially by the School of Clinical and Experimental Medicine, University of Birmingham, UK.

Conflict of interests

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Hauton.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PPTX 462 kb)

ESM 2

(PPT 404 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauton, D., Holmes, A., Ziff, O. et al. The impact of acute and chronic catecholamines on respiratory responses to hypoxic stress in the rat. Pflugers Arch - Eur J Physiol 465, 209–219 (2013). https://doi.org/10.1007/s00424-012-1210-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-012-1210-z

Keywords

Navigation