Skip to main content

Advertisement

Log in

Differentiating shunt-responsive normal pressure hydrocephalus from Alzheimer disease and normal aging: pilot study using automated MRI brain tissue segmentation

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Evidence suggests that normal pressure hydrocephalus (NPH) is underdiagnosed in day to day radiologic practice, and differentiating NPH from cerebral atrophy due to other neurodegenerative diseases and normal aging remains a challenge. To better characterize NPH, we test the hypothesis that a prediction model based on automated MRI brain tissue segmentation can help differentiate shunt-responsive NPH patients from cerebral atrophy due to Alzheimer disease (AD) and normal aging. Brain segmentation into gray and white matter (GM, WM), and intracranial cerebrospinal fluid was derived from pre-shunt T1-weighted MRI of 15 shunt-responsive NPH patients (9 men, 72.6 ± 8.0 years-old), 17 AD patients (10 men, 72.1 ± 11.0 years-old) chosen as a representative of cerebral atrophy in this age group; and 18 matched healthy elderly controls (HC, 7 men, 69.7 ± 7.0 years old). A multinomial prediction model was generated based on brain tissue volume distributions. GM decrease of 33 % relative to HC characterized AD (P < 0.005). High preoperative ventricular and near normal GM volumes characterized NPH. A multinomial regression model based on gender, GM and ventricular volume had 96.3 % accuracy differentiating NPH from AD and HC. In conclusion, automated MRI brain tissue segmentation differentiates shunt-responsive NPH with high accuracy from atrophy due to AD and normal aging. This method may improve diagnosis of NPH and improve our ability to distinguish normal from pathologic aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

NPH:

Normal pressure hydrocephalus

AD:

Alzheimer disease

HC:

Healthy control

CSF:

Cerebrospinal fluid

GM:

Gray matter

WM:

White matter

References

  1. Adams RD et al (1965) Symptomatic occult hydrocephalus with “Normal” cerebrospinal-fluid pressure. A treatable syndrome. N Engl J Med 273:117–126

    Article  CAS  PubMed  Google Scholar 

  2. Finney GR (2009) Normal pressure hydrocephalus. Int Rev Neurobiol 84:263–281

    Article  PubMed  Google Scholar 

  3. Aygok G, Marmarou A, Young HF (2005) Three-year outcome of shunted idiopathic NPH patients. Acta Neurochir Suppl 95:241–245

    Article  CAS  PubMed  Google Scholar 

  4. Malm J et al (2000) Three-year survival and functional outcome of patients with idiopathic adult hydrocephalus syndrome. Neurology 55(4):576–578

    Article  CAS  PubMed  Google Scholar 

  5. Meier U, Miethke C (2003) Predictors of outcome in patients with normal-pressure hydrocephalus. J Clin Neurosci 10(4):453–459

    Article  PubMed  Google Scholar 

  6. Kahlon B, Sjunnesson J, Rehncrona S (2007) Long-term outcome in patients with suspected normal pressure hydrocephalus. Neurosurgery 60(2):327–332 (discussion 332)

    Article  PubMed  Google Scholar 

  7. Tisell M et al (2006) Long-term outcome in 109 adult patients operated on for hydrocephalus. Br J Neurosurg 20(4):214–221

    Article  CAS  PubMed  Google Scholar 

  8. Hebb AO, Cusimano MD (2001) Idiopathic normal pressure hydrocephalus: a systematic review of diagnosis and outcome. Neurosurgery 49(5):1166–1184 (discussion 1184–1186)

    CAS  PubMed  Google Scholar 

  9. Leinonen V et al (2012) Post-mortem findings in 10 patients with presumed normal-pressure hydrocephalus and review of the literature. Neuropathol Appl Neurobiol 38(1):72–86

    Article  CAS  PubMed  Google Scholar 

  10. Ishikawa M et al (2008) Guidelines for management of idiopathic normal pressure hydrocephalus. Neurol Med Chir (Tokyo) 48(Suppl):S1–S23

    Article  Google Scholar 

  11. George AE et al (1995) The differential diagnosis of Alzheimer’s disease. Cerebral atrophy versus normal pressure hydrocephalus. Neuroimaging Clin N Am 5(1):19–31

    CAS  PubMed  Google Scholar 

  12. Holodny AI et al (1998) Focal dilation and paradoxical collapse of cortical fissures and sulci in patients with normal-pressure hydrocephalus. J Neurosurg 89(5):742–747

    Article  CAS  PubMed  Google Scholar 

  13. Lee WJ et al (2010) Brain MRI as a predictor of CSF tap test response in patients with idiopathic normal pressure hydrocephalus. J Neurol 257(10):1675–1681

    Article  PubMed  Google Scholar 

  14. Tarnaris A, Kitchen ND, Watkins LD (2009) Noninvasive biomarkers in normal pressure hydrocephalus: evidence for the role of neuroimaging. J Neurosurg 110(5):837–851

    Article  CAS  PubMed  Google Scholar 

  15. Toma AK et al (2011) Evans’ index revisited: the need for an alternative in normal pressure hydrocephalus. Neurosurgery 68(4):939–944

    PubMed  Google Scholar 

  16. Rusinek H et al (1991) Alzheimer disease: measuring loss of cerebral gray matter with MR imaging. Radiology 178(1):109–114

    Article  CAS  PubMed  Google Scholar 

  17. George AE et al (1981) Parenchymal CT correlates of senile dementia (Alzheimer disease): loss of gray-white matter discriminability. AJNR Am J Neuroradiol 2(3):205–213

    CAS  PubMed  Google Scholar 

  18. Nelson AJ (1976) Analysis of movement through utilisation of clinical instrumentation. Physiotherapy 62(4):123–124

    CAS  PubMed  Google Scholar 

  19. Nelson AJ et al (2002) The validity of the GaitRite and the Functional Ambulation Performance scoring system in the analysis of Parkinson gait. NeuroRehabilitation 17(3):255–262

    PubMed  Google Scholar 

  20. Hauser SL et al (1983) Immunosuppression and plasmapheresis in chronic progressive multiple sclerosis. Design of a clinical trial. Arch Neurol 40(11):687–690

    Article  CAS  PubMed  Google Scholar 

  21. Folstein MF, Folstein SE, McHugh PR (1975) “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189–198

    Article  CAS  PubMed  Google Scholar 

  22. Reisberg B et al (1982) The Global Deterioration Scale for assessment of primary degenerative dementia. Am J Psychiatry 139(9):1136–1139

    Article  CAS  PubMed  Google Scholar 

  23. Fisher CM (1982) Hydrocephalus as a cause of disturbances of gait in the elderly. Neurology 32(12):1358–1363

    Article  CAS  PubMed  Google Scholar 

  24. Graff-Radford NR, Godersky JC (1986) Normal-pressure hydrocephalus. Onset of gait abnormality before dementia predicts good surgical outcome. Arch Neurol 43(9):940–942

    Article  CAS  PubMed  Google Scholar 

  25. Golomb J et al (2000) Alzheimer’s disease comorbidity in normal pressure hydrocephalus: prevalence and shunt response. J Neurol Neurosurg Psychiatry 68(6):778–781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26(3):839–851

    Article  PubMed  Google Scholar 

  27. Mikheev A et al (2008) Fully automatic segmentation of the brain from T1-weighted MRI using Bridge Burner algorithm. J Magn Reson Imaging 27(6):1235–1241

    Article  PubMed  Google Scholar 

  28. AA (2002) Categorical Data Analysis, 2nd edn. John Wiley & Sons, New York

  29. Tanabe JL et al (1997) Tissue segmentation of the brain in Alzheimer disease. AJNR Am J Neuroradiol 18(1):115–123

    CAS  PubMed  Google Scholar 

  30. Karas GB et al (2003) A comprehensive study of gray matter loss in patients with Alzheimer’s disease using optimized voxel-based morphometry. Neuroimage 18(4):895–907

    Article  CAS  PubMed  Google Scholar 

  31. Balthazar ML et al (2009) Differences in grey and white matter atrophy in amnestic mild cognitive impairment and mild Alzheimer’s disease. Eur J Neurol 16(4):468–474

    Article  CAS  PubMed  Google Scholar 

  32. Ishii K et al (2008) Voxel-based analysis of gray matter and CSF space in idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Disord 25(4):329–335

    Article  PubMed  Google Scholar 

  33. Moore DW et al (2012) A pilot study of quantitative MRI measurements of ventricular volume and cortical atrophy for the differential diagnosis of normal pressure hydrocephalus. Neurol Res Int 2012:718150

    Article  PubMed Central  PubMed  Google Scholar 

  34. Kang K et al (2013) Idiopathic normal-pressure hydrocephalus, cortical thinning, and the cerebrospinal fluid tap test. J Neurol Sci 334(1–2):55–62

    Article  PubMed  Google Scholar 

  35. Bradley WG Jr et al (1996) Normal-pressure hydrocephalus: evaluation with cerebrospinal fluid flow measurements at MR imaging. Radiology 198(2):523–529

    Article  PubMed  Google Scholar 

  36. Bradley WG Jr (2001) Diagnostic tools in hydrocephalus. Neurosurg Clin N Am 12(4): 661–684, viii

  37. Walchenbach R et al (2002) The value of temporary external lumbar CSF drainage in predicting the outcome of shunting on normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 72(4):503–506

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Marmarou A et al (2005) The value of supplemental prognostic tests for the preoperative assessment of idiopathic normal-pressure hydrocephalus. Neurosurgery 57(3 Suppl):S17–S28 (discussion ii–v)

    PubMed  Google Scholar 

  39. Wikkelso C et al (2013) The European iNPH Multicentre Study on the predictive values of resistance to CSF outflow and the CSF Tap Test in patients with idiopathic normal pressure hydrocephalus. J Neurol Neurosurg Psychiatry 84(5):562–568

    Article  PubMed  Google Scholar 

  40. Bradley WG (2000) Normal pressure hydrocephalus: new concepts on etiology and diagnosis. AJNR Am J Neuroradiol 21(9):1586–1590

    CAS  PubMed  Google Scholar 

  41. Holodny AI et al (1998) MR differential diagnosis of normal-pressure hydrocephalus and Alzheimer disease: significance of perihippocampal fissures. AJNR Am J Neuroradiol 19(5):813–819

    CAS  PubMed  Google Scholar 

  42. Hattori T et al (2012) White matter alteration in idiopathic normal pressure hydrocephalus: tract-based spatial statistics study. AJNR Am J Neuroradiol 33(1):97–103

    Article  CAS  PubMed  Google Scholar 

  43. Osuka S et al (2010) Diffusion tensor imaging in patients with adult chronic idiopathic hydrocephalus. Neurosurgery 67(5):E1474

    Article  PubMed  Google Scholar 

  44. Hattingen E et al (2010) Diffusion tensor imaging in patients with adult chronic idiopathic hydrocephalus. Neurosurgery 66(5):917–924

    Article  PubMed  Google Scholar 

  45. Kim MJ et al (2011) Differential diagnosis of idiopathic normal pressure hydrocephalus from other dementias using diffusion tensor imaging. AJNR Am J Neuroradiol 32(8):1496–1503

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Institutes of Health Grants AG012101, AG027852, AG08051, EB01015 and NS050520. We wish to acknowledge the assistance of Dr. Joseph A. Helpern in providing data obtained from his grants (AG 027852 and The Litwin Foundation) for analysis, and Patricia Tolete for her assistance in reviewing medical records.

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflicts of interest.

Ethical Standards

This study has been performed in accordance with the standards laid down in the Declaration of Helsinki.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yafell Serulle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serulle, Y., Rusinek, H., Kirov, I.I. et al. Differentiating shunt-responsive normal pressure hydrocephalus from Alzheimer disease and normal aging: pilot study using automated MRI brain tissue segmentation. J Neurol 261, 1994–2002 (2014). https://doi.org/10.1007/s00415-014-7454-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-014-7454-0

Keywords

Navigation