Skip to main content
Log in

Induced transcription results in local changes in chromatin structure, replication timing, and DNA polytenization in a site of intercalary heterochromatin

  • Research Article
  • Published:
Chromosoma Aims and scope Submit manuscript

Abstract

In salivary gland polytene chromosomes of Drosophila melanogaster, the regions of intercalary heterochromatin are characterized by late replication, under-replication, and genetic silencing. Using Gal4/UAS system, we induced transcription of sequences adjacent to transgene insertions in the band 11A6-9. This activation resulted in a loss of “silent” and appearance of “active” epigenetic marks, recruitment of RNA polymerase II, and formation of a puff. The activated region is now early replicating and shows increased level of DNA polytenization. Notably, all these changes are restricted to the area around the inserts, whereas the rest of the band remains inactive and late replicating. Although only a short area near the insertion site is transcribed, it results in an “open” chromatin conformation in a much broader region. We conclude that regions of intercalary heterochromatin do not form stand-alone units of late replication and under-replication. Every part of such regions can be activated and polytenized independently of other parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aggarwal BD, Calvi BR (2004) Chromatin regulates origin activity in Drosophila follicle cells. Nature 430:372–376

    Article  PubMed  CAS  Google Scholar 

  • Ahmad K, Henikoff S (2001) Modulation of a transcription factor counteracts heterochromatic gene silencing in Drosophila. Cell 104:839–847

    Article  PubMed  CAS  Google Scholar 

  • Andreyeva EN, Kolesnikova TD, Belyaeva ES, Glaser RL, Zhimulev IF (2008) Local DNA underreplication correlates with accumulation of phosphorylated H2Av in the Drosophila melanogaster polytene chromosomes. Chromosome Res 16:851–862

    Article  PubMed  CAS  Google Scholar 

  • Arcos-Teran L (1972) DNA replication and the nature of late replicating loci in the X-chromosome of Drosophila melanogaster. Chromosoma 37:233–296

    Article  PubMed  CAS  Google Scholar 

  • Babenko VN, Makunin IV, Brusentsova IV, Belyaeva ES, Maksimov DA, Belyakin SN, Maroy P, Vasil'eva LA, Zhimulev IF (2010) Paucity and preferential suppression of transgenes in late replication domains of the D. melanogaster genome. BMC Genomics 11:318

    Article  PubMed  Google Scholar 

  • Bellen HJ, Levis RW, Liao G, He Y, Carlson JW, Tsang G, Evans-Holm M, Hiesinger PR, Schulze KL, Rubin GM, Hoskins RA, Spradling AC (2004) The BDGP gene disruption project: Single transposon insertions associated with 40 % of Drosophila genes. Genetics 167:761–781

    Article  PubMed  CAS  Google Scholar 

  • Belyaeva ES, Demakov SA, Pokholkova GV, Alekseyenko AA, Kolesnikova TD, Zhimulev IF (2006) DNA underreplication in intercalary heterochromatin regions in polytene chromosomes of Drosophila melanogaster correlates with the formation of partial chromosomal aberrations and ectopic pairing. Chromosoma 115:355–366

    Article  PubMed  CAS  Google Scholar 

  • Belyaeva ES, Andreyeva EN, Belyakin SN, Volkova EI, Zhimulev IF (2008) Intercalary heterochromatin in polytene chromosomes of Drosophila melanogaster. Chromosoma 117:411–418

    Article  PubMed  CAS  Google Scholar 

  • Belyaeva ES, Goncharov FP, Demakova OV, Kolesnikova TD, Boldyreva LV, Semeshin VF, Zhimulev IF (2012) Late replication domains in polytene and non-polytene cells of Drosophila melanogaster. PLoS One 7(1):e30035

    Article  PubMed  CAS  Google Scholar 

  • Belyakin SN, Christophides GK, Alekseyenko AA, Kriventseva EV, Belyaeva ES, Nanayev RA, Makunin IV, Kafatos FC, Zhimulev IF (2005) Genomic analysis of Drosophila chromosome underreplication reveals a link between replication control and transcriptional territories. Proc Natl Acad Sci USA 102:8269–8274

    Article  PubMed  CAS  Google Scholar 

  • Belyakin SN, Babenko VN, Maksimov DA, Shloma VV, Kvon EZ, Belyaeva ES, Zhimulev IF (2010) Gene density profile reveals the marking of late replicated domains in the Drosophila melanogaster genome. Chromosoma 119:589–600

    Article  PubMed  Google Scholar 

  • Borowiec JA, Schildkraut CL (2011) Open sesame: Activating dormant replication origins in the mouse immunoglobulin heavy chain (Igh) locus. Curr Opin Cell Biol 23:284–292

    Article  PubMed  CAS  Google Scholar 

  • Bridges C (1935) Salivary chromosome map with a key to the banding of the chromosomes of Drosophila melanogaster. J Hered 26:60–64

    Google Scholar 

  • Cavalli G, Paro R (1998) The Drosophila Fab-7 chromosomal element conveys epigenetic inheritance during mitosis and meiosis. Cell 93:505–518

    Article  PubMed  CAS  Google Scholar 

  • Chambeyron S, Bickmore WA (2004) Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev 18:1119–1130

    Article  PubMed  CAS  Google Scholar 

  • Chintapalli VR, Wang J, Dow JAT (2007) Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nature Genet 39:715–720

    Article  PubMed  CAS  Google Scholar 

  • Donaldson AD (2005) Shaping time: Chromatin structure and the DNA replication programme. Trends Genet 21:444–449

    Article  PubMed  CAS  Google Scholar 

  • Eaton ML, Prinz JA, MacAlpine HK, Tretyakov G, Kharchenko PV, MacAlpine DM (2011) Chromatin signatures of the Drosophila replication program. Genome Res 21:164–174

    Article  PubMed  CAS  Google Scholar 

  • Filion GJ, van Bemmel JG, Braunschweig U, Talhout W, Kind J, Ward LD, Brugman W, de Castro IJ, Kerkhoven RM, Bussemaker HJ, van Steensel B (2010) Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143:212–224

    Article  PubMed  CAS  Google Scholar 

  • Gierman HJ, Indemans MHG, Koster J, Goetze S, Seppen J, Geerts D, van Drie R, Versteeg R (2007) Domain-wide regulation of gene expression in the human genome. Genome Res 17:1286–1295

    Article  PubMed  CAS  Google Scholar 

  • Gilbert DM (2010) Cell fate transitions and the replication timing decision point. J Cell Biol 191:899–903

    Article  PubMed  CAS  Google Scholar 

  • Graveley BR, Brooks AN, Carlson JW et al (2011) The developmental transcriptome of Drosophila melanogaster. Nature 471:473–479

    Article  PubMed  CAS  Google Scholar 

  • Guilbaud G, Rappailles A, Baker A, Chen CL, Arneodo A, Goldar A, d’Aubenton-Carafa Y, Thermes C, Audit B, Hyrien O (2011) Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome. PLoS Comput Biol 7(12):e1002322

    Article  PubMed  CAS  Google Scholar 

  • Hägele K, Kalisch WE (1974) Initial phases of DNA synthesis in Drosophila melanogaster. I. Differential participation in replication of the X chromosomes in males and females. Chromosoma 47:403–413

    Article  PubMed  Google Scholar 

  • Hiratani I, Gilbert DM (2009) Replication timing as an epigenetic mark. Epigenetics 4:93–97

    Article  PubMed  CAS  Google Scholar 

  • Holmquist GP (1987) Role of replication time in the control of tissue-specific gene expression. Am J Hum Genet 40:151–173

    PubMed  CAS  Google Scholar 

  • Kalisch WE, Hägele K (1976) Correspondence of banding patterns to 3H-thymidine labeling patterns in polytene chromosomes. Chromosoma 57:19–23

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann BP (1939) Distribution of induced breaks along the X-chromosome of Drosophila melanogaster. Proc Natl Acad Sci USA 25:571–577

    Article  PubMed  CAS  Google Scholar 

  • Kolesnikova TD, Semeshin VF, Andreyeva EN, Zykov IA, Kokoza EB, Kalashnikova DA, Belyaeva ES, Zhimulev IF (2011) Induced decondensation of heterochromatin in Drosophila melanogaster polytene chromosomes under condition of ectopic expression of the Supressor of underreplication gene. Fly (Austin) 5:181–190

    CAS  Google Scholar 

  • Madigan JP, Chotkowski HL, Glaser RL (2002) DNA double-strand break-induced phosphorylation of Drosophila histone variant H2Av helps prevent radiation-induced apoptosis. Nucleic Acids Res 30:3698–3705

    Article  PubMed  CAS  Google Scholar 

  • Makunin IV, Volkova EI, Belyaeva ES, Nabirochkina EN, Pirrotta V, Zhimulev IF (2002) The Drosophila suppressor of underreplication protein binds to late-replicating regions of polytene chromosomes. Genetics 160:1023–1034

    PubMed  CAS  Google Scholar 

  • MacAlpine DM, Bell SP (2005) A genomic view of eukaryotic DNA replication. Chromosome Res 13:309–326

    Article  PubMed  CAS  Google Scholar 

  • MacAlpine DM, Rodríguez HK, Bell SP (2004) Coordination of replication and transcription along a Drosophila chromosome. Genes Dev 18:3094–3105

    Article  PubMed  CAS  Google Scholar 

  • MacAlpine HK, Gordan R, Powell SK, Hartemink AJ, MacAlpine DM (2010) Drosophila ORC localizes to open chromatin and marks sites of cohesin complex loading. Genome Res 20:201–211

    Article  PubMed  CAS  Google Scholar 

  • Nordman J, Li S, Eng T, MacAlpine D, Orr-Weaver TL (2010) Developmental control of the DNA replication and transcription programs. Genome Res 21:175–181

    Article  PubMed  Google Scholar 

  • Norio P, Kosiyatrakul S, Yang Q, Guan Z, Brown NM, Thomas S, Riblet R, Schildkraut CL (2005) Progressive activation of DNA replication initiation in large domains of the immunoglobulin heavy chain locus during B cell development. Mol Cell 20:575–587

    Article  PubMed  CAS  Google Scholar 

  • Petesch SJ, Lis JT (2008) Rapid, transcription-independent loss of nucleosomes over a large chromatin domain at Hsp70 loci. Cell 134:74–84

    Article  PubMed  CAS  Google Scholar 

  • Pope BD, Hiratani I, Gilbert DM (2010) Domain-wide regulation of DNA replication timing during mammalian development. Chromosome Res 18:127–136

    Article  PubMed  CAS  Google Scholar 

  • Ranz JM, Díaz-Castillo C, Petersen R (2012) Conserved gene order at the nuclear periphery in Drosophila. Mol Biol Evol 29:13–16

    Article  PubMed  CAS  Google Scholar 

  • Ryba T, Hiratani I, Sasaki T, Battaglia D, Kulik M, Zhang J, Dalton S, Gilbert DM (2011) Replication timing: A fingerprint for cell identity and pluripotency. PLoS Comput Biol 7(10):e1002225

    Article  PubMed  CAS  Google Scholar 

  • Schwaiger M, Stadler MB, Bell O, Kohler H, Oakeley EJ, Schübeler D (2009) Chromatin state marks cell-type- and gender-specific replication of the Drosophila genome. Genes Dev 23:589–601

    Article  PubMed  CAS  Google Scholar 

  • Schwaiger M, Schübeler D (2006) A question of timing: Emerging links between transcription and replication. Curr Opin Genet Dev 16:177–183

    Article  PubMed  CAS  Google Scholar 

  • Sher N, Bell GW, Li S, Nordman J, Eng T, Eaton ML, Macalpine DM, Orr-Weaver TL (2012) Developmental control of gene copy number by repression of replication initiation and fork progression. Genome Res 22:64–75

    Article  PubMed  CAS  Google Scholar 

  • Tumbar T, Sudlow G, Belmont AS (1999) Large-scale chromatin unfolding and remodeling induced by VP16 acidic activation domain. J Cell Biol 145:1341–1354

    Article  PubMed  CAS  Google Scholar 

  • White EJ, Emanuelsson O, Scalzo D, Royce T, Kosak S, Oakeley EJ, Weissman S, Gerstein M, Groudine M, Snyder M, Schübeler D (2004) DNA replication-timing analysis of human chromosome 22 at high resolution and different developmental states. Proc Natl Acad Sci USA 101:17771–17776

    Article  PubMed  CAS  Google Scholar 

  • Zhimulev IF, Belyaeva ES, Makunin IV, Pirrotta V, Volkova EI, Alekseyenko AA, Andreyeva EN, Makarevich GF, Boldyreva LV, Nanayev RA, Demakova OV (2003) Influence of the SuUR gene on intercalary heterochromatin in Drosophila melanogaster polytene chromosomes. Chromosoma 111:377–398

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Prof. K. McKim, Prof. E. Käs, and Prof. H. Saumweber for the antibodies; thank Bloomington Drosophila Stock Center and Prof. P.G. Georgiev for the flystocks; and thank Dr. A. Gorchakov for the discussion. This work was supported by the Program of Presidium of the Russian Academy of Sciences “Molecular and Cellular Biology” (grant no. 6.4) and by the grant of Russian Foundation of Basic Research 12-04-31128 (DAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena S. Belyaeva.

Additional information

Responsible editor: Terry Orr-Weaver

Dmitry E. Koryakov and Galina V. Pokholkova contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Changes in chromatin make-up upon induced transcription of EY01976. Shown is a fragment of X chromosome (regions 10-11) with inactive insertion (a), insertion activated by hsp70-Gal4 at 18°С (b) and by da-Gal4 (c). Phase contrast (a-c) and overlay of phase contrast and immunostaining (d-h). Lines connect the same chromosome regions. Asterisk denotes a puff at 10EF. Bar, 5 μm (JPEG 59 kb)

High resolution image (TIFF 7995 kb)

Supplementary Fig. 2

Normalized RNA quantification around EY01976 insertion, shown as a log scale. qRT-PCR probes used and their positions on molecular map are indicated below the columns. Genotypes and induction conditions are color-coded. Error bars represent standard deviation (GIF 6 kb)

High resolution image (EPS 96 kb)

Supplementary Fig. 3

Degree of polytenization within the region 11A6-9 harboring EY01976 transgene, activated with da-Gal4 driver. x-axis shows genomic coordinates, y-axis shows the level of polytenization. The y-axis was scaled so that Actin42A gene polytenization level was equal 1. Red-shaded curves (red, orange, pink) correspond to the lines with inactive insertions or with Gal4-drivers. Blue-shaded lines (dark blue, light blue, purple) depict the polytenization profiles in stocks where transgenes are Gal4-activated. Arrows indicate insertion and PCR probes positions. Error bars represent standard deviation (GIF 32 kb)

High resolution image (EPS 155 kb)

Supplementary Fig. 4

Examples of typical immunostaining results with antibodies against RNA pol II, H3K9me2, and H3K9ac in the polytene sections 10-11. Fluorescent signal and phase contrast images are shown separately. The images with fluorescence clearly demonstrate the fact that prior to activation the region 11A6-9 (indicated by arrows) was not associated with these proteins. Bar, 5 μm (JPEG 99 kb)

High resolution image (TIFF 12368 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koryakov, D.E., Pokholkova, G.V., Maksimov, D.A. et al. Induced transcription results in local changes in chromatin structure, replication timing, and DNA polytenization in a site of intercalary heterochromatin. Chromosoma 121, 573–583 (2012). https://doi.org/10.1007/s00412-012-0382-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00412-012-0382-9

Keywords

Navigation