Skip to main content

Advertisement

Log in

Axially vascularized bone substitutes: a systematic review of literature and presentation of a novel model

  • Handsurgery
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Abstract

Introduction

The creation of axially vascularized bone substitutes (AVBS) has been successfully demonstrated in several animal models. One prototypical indication is bone replacement in patients with previously irradiated defect sites, such as in the mandibular region. The downside of current clinical practice, when free fibular or scapular grafts are used, is the creation of significant donor site morbidity.

Methods

Based on our previous experiments, we extended the creation of an arterio-venous loop to generate vascularized bone substitutes to a new defect model in the goat mandibula. In this report, we review the literature regarding different models for axially vascularized bone substitutes and present a novel model demonstrating the feasibility of combining this model with synthetic porous scaffold materials and biological tissue adhesives to grow cells and tissue.

Results

We were able to show the principal possibility to generate axially vascularized bony substitutes in vivo in goat mandibular defects harnessing the regenerative capacity of the living organism and completely avoiding donor site morbidity.

Conclusion

From our findings, we conclude that this novel model may well offer new perspectives for orthopedic and traumatic bone defects that might benefit from the reduction of donor site morbidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update. Injury 36:20

    Article  Google Scholar 

  2. Rogers SN, Lakshmiah SR, Narayan B et al (2003) A comparison of the long term morbidity following deep circumflex iliac and fibula free flaps for reconstruction following head and neck cancer. Plast Reconstr Surg 112:1517

    Article  PubMed  Google Scholar 

  3. Hartman EH, Spauwen PH, Jansen JA (2002) Donor-site complications in vascularized bone flap surgery. J Invest Surg 15:185

    Article  PubMed  Google Scholar 

  4. Hodde J (2002) Naturally occurring scaffolds for soft tissue repair and regeneration. Tissue Eng 8:295

    Article  PubMed  CAS  Google Scholar 

  5. Bleiziffer O, Hammon M, Naschberger E, Lipnik K, Arkudas A, Rath S, Pryymachuk G, Beier JP, Stürzl M, Horch RE, Kneser U (2011) Endothelial progenitor cells are integrated in newly formed capillaries and alter adjacent fibrovascular tissue after subcutaneous implantation in a fibrin matrix. J Cell Mol Med 15:2452

    Article  PubMed  CAS  Google Scholar 

  6. Kneser U, Polykandriotis E, Ohnolz J et al (2006) Engineering of vascularized transplantable bone tissues: Induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Eng 12:1721

    Article  PubMed  CAS  Google Scholar 

  7. Polykandriotis E, Arkudas A, Horch RE, Stürzl M, Kneser U (2007) Autonomously vascularized cellular constructs in tissue engineering: opening a new perspective for biomedical science. J Cell Mol Med 11:6

    Article  PubMed  CAS  Google Scholar 

  8. Erol OO, Spira M (1979) New capillary bed formation with a surgically constructed arteriovenous fistula. Surg Forum 30:530

    PubMed  CAS  Google Scholar 

  9. Morrison WA, Dvir E, Doi K, Hurley JV, Hickey MJ, O’Brien BM (1990) Prefabrication of thin transferable axial-pattern skin flaps: an experimental study in rabbits. Br J Plast Surg 43:645

    Article  PubMed  CAS  Google Scholar 

  10. Guo L, Pribaz J (2009) Clinical flap prefabrication. Plast Reconstr Surg 124:340

    Google Scholar 

  11. Pribaz JJ, Fine NA (1994) Prelamination: defining the prefabricated flap. A case report and review. Microsurgery 15:618

    Article  PubMed  CAS  Google Scholar 

  12. Lokmic Z, Stillaert F, Morrison WA, Thompson EW, Mitchell GM (2007) An arteriovenous loop in a protected space generates a permanent, highly vascular, tissue-engineered construct. Faseb J 21:511

    Article  PubMed  CAS  Google Scholar 

  13. Rosenkilde MM, Schwartz TW (2004) The chemokine system—a major regulator of angiogenesis in health and disease. APMIS. 112:481

    Article  PubMed  CAS  Google Scholar 

  14. Maulik N, Das DK (2002) Potentiation of angiogenic response by ischemic and hypoxic preconditioning of the heart. J Cell Mol Med 6:13

    Article  PubMed  CAS  Google Scholar 

  15. Nath KA, Kanakiriya SK, Grande JP, Croatt AJ, Katusic ZS (2003) Increased venous proinflammatory gene expression and intimal hyperplasia in an aorto-caval fistula model in the rat. Am J Pathol 162:2079

    Article  PubMed  CAS  Google Scholar 

  16. Bobryshev YV, Farnsworth AE, Lord RS (2001) Expression of vascular endothelial growth factor in aortocoronary saphenous vein bypass grafts. Cardiovasc Surg 9:492

    Article  PubMed  CAS  Google Scholar 

  17. Ito A, Hirota S, Mizuno H, Kawasaki Y, Takemura T, Nishiura T, Kanakura Y, Katayama Y, Nomura S, Kitamura Y (1995) Expression of vascular permeability factor (VPF/VEGF) messenger RNA by plasma cells: possible involvement in the development of edema in chronic inflammation. Pathol Int 45:715

    Article  PubMed  CAS  Google Scholar 

  18. Dvorak HF, Detmar M, Claffey KP, Nagy JA, van de Water L, Senger DR (1995) Vascular permeability factor/vascular endothelial growth factor: an important mediator of angiogenesis in malignancy and inflammation. Int Arch Allergy Immunol 107:233

    Article  PubMed  CAS  Google Scholar 

  19. Chien S, Li S, Shyy YJ (1998) Effects of mechanical forces on signal transduction and gene expression in endothelial cells. Hypertension 31:162

    Article  PubMed  CAS  Google Scholar 

  20. Davies PF, Remuzzi A, Gordon EJ, Dewey CF Jr, Gimbrone MA Jr (1986) Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci USA 83:2114

    Article  PubMed  CAS  Google Scholar 

  21. Asano Y, Ichioka S, Shibata M, Ando J, Nakatsuka T (2005) Sprouting from arteriovenous shunt vessels with increased blood flow. Med Biol Eng Comput 43:126

    Article  PubMed  CAS  Google Scholar 

  22. Heil M, Eitenmuller I, Schmitz-Rixen T, Schaper W (2006) Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med 10:45

    Article  PubMed  CAS  Google Scholar 

  23. Arkudas A, Beier JP, Heidner K, Tjiawi J, Polykandriotis E, Srour S, Sturzl M, Horch RE, Kneser U (2007) Axial prevascularization of porous matrices using an arteriovenous loop promotes survival and differentiation of transplanted autologous osteoblasts. Tissue Eng 13:1549

    Article  PubMed  CAS  Google Scholar 

  24. Fiegel HC, Pryymachuk G, Rath S, Bleiziffer O, Beier JP, Bruns H, Kluth D, Metzger R, Horch RE, Till H, Kneser U (2010) Foetal hepatocyte transplantation in a vascularized AV-Loop transplantation model in the rat. J Cell Mol Med 14:267

    Article  PubMed  CAS  Google Scholar 

  25. Mian R, Morrison WA, Hurley JV, Penington AJ, Romeo R, Tanaka Y, Knight KR (2000) Formation of new tissue from an arteriovenous loop in the absence of added extracellular matrix. Tissue Eng 6:595

    Article  PubMed  CAS  Google Scholar 

  26. Cassell OCS, Morrison WA, Messina A, Penington AJ, Thompson EW, Stevens GW, Perera JM, Kleinman HK, Hurley JV, Romeo R, Knight KR (2001) The influence of extracellular matrix on the generation of vascularized, engineered, transplantable tissue. Ann N Y Acad Sci 944:429

    Article  PubMed  CAS  Google Scholar 

  27. Manasseri B, Cuccia G, Moimas S, D’Alcontres FS, Polito F, Bitto A, Altavilla D, Squadrito F, Geuna S, Pattarini L, Zentilin L, Collesi C, Puligadda U, Giacca M, Colonna MR (2007) Microsurgical arteriovenous loops and biological templates: a novel in vivo chamber for tissue engineering. Microsurgery 27:623

    Article  PubMed  Google Scholar 

  28. Morritt AN, Bortolotto SK, Dilley RJ, Han X, Kompa AR, McCombe D, Wright CE, Itescu S, Angus JA, Morrison WA (2007) Cardiac tissue engineering in an in vivo vascularized chamber. Circulation 115:353

    Article  PubMed  Google Scholar 

  29. Bach AD, Arkudas A, Tjiawi J, Polykandriotis E, Kneser U, Horch RE, Beier JP (2006) A new approach to tissue engineering of vascularized skeletal muscle. J Cell Mol Med 10:716

    Article  PubMed  CAS  Google Scholar 

  30. Klumpp D, Horch RE, Kneser U, Beier JP (2010) Engineering skeletal muscle tissue: new perspectives in vitro and in vivo. J Cell Mol Med 14:2622

    Article  PubMed  Google Scholar 

  31. Laschke MW, Harder Y, Amon M, Martin I, Farhadi J, Ring A, Torio-Padron N, Schramm R, Rücker M, Junker D, Haüfel JM, Carvalho C, Heberer M, Germann G, Vollmar B, Menger MD (2006) Angiogenesis in tissue engineering: breathing life into constructed tissue substitutes. Tissue Eng 12:2093

    Article  PubMed  CAS  Google Scholar 

  32. Beier JP, Horch RE, Arkudas A, Polykandriotis E, Bleiziffer O, Adamek E, Hess A, Kneser U (2009) De novo generation of axially vascularized tissue in a large animal model. Microsurgery 29:42

    Article  PubMed  Google Scholar 

  33. Beier JP, Horch RE, Hess A et al (2010) Axial vascularization of a large volume calcium phosphate ceramic bone substitute in the sheep AV loop model. J Tissue Eng Regen Med 4:216

    Article  PubMed  CAS  Google Scholar 

  34. Polykandriotis E, Tjiawi J, Euler S, Arkudas A, Hess A, Brune K et al (2008) The venous graft as an effector of early angiogenesis in a fibrin matrix. Microvasc Res 75:25

    Article  PubMed  CAS  Google Scholar 

  35. Arkudas A, Pryymachuk G, Hoereth T, Beier JP, Polykandriotis E, Bleiziffer O, Horch RE, Kneser U (2009) Dose-finding study of fibrin gel-immobilized vascular endothelial growth factor 165 and basic fibroblast growth factor in the arteriovenous loop rat model. Tissue Eng Part A 15:2501

    Article  PubMed  CAS  Google Scholar 

  36. Arkudas A, Beier JP, Pryymachuk G, Hoereth T, Bleiziffer O, Polykandriotis E, Hess A, Gulle H, Horch RE, Kneser U (2010) Automatic quantitative micro-computed tomography evaluation of angiogenesis in an axially vascularized tissue-engineered bone construct. Tissue Eng Part C 16:1503

    Article  CAS  Google Scholar 

  37. Arkudas A, Pryymachuk G, Beier JP, Weigel L, Koerner C, Singer RF, Bleiziffer O, Polykandriotis E, Horch RE, Kneser U (2012) Combination of extrinsic and intrinsic pathways significantly accelerates axial vascularization of bioartificial tissues. Plast Reconstr Surg 129:55

    Article  Google Scholar 

  38. Beier JP, Hess A, Loew J, Heinrich J, Boos AM, Arkudas A, Polykandriotis E, Bleiziffer O, Horch RE, Kneser U (2011) De novo generation of an axially vascularized processed bovine cancellous-bone substitute in the sheep arteriovenous-loop model. Eur Surg Res 46:148

    Article  PubMed  CAS  Google Scholar 

  39. Boos AM, Loew JS, Deschler G, Arkudas A, Bleiziffer O, Gulle H, Dragu A, Kneser U, Horch RE, Beier JP (2011) Directly auto-transplanted mesenchymal stem cells induce bone formation in a ceramic bone substitute in an ectopic sheep model. J Cell Mol Med 15:1364

    Article  PubMed  CAS  Google Scholar 

  40. Boos AM, Loew JS, Weigand A, Deschler G, Klumpp D, Arkudas A, Bleiziffer O, Gulle H, Kneser U, Horch RE, Beier JP (2012) Engineering axially vascularized bone in the sheep arteriovenous-loop model. Tissue Eng Regen Med [Epub ahead of print]

  41. Einhorn TA. Basic science of bone graft substitutes. Paper presented at the annual meeting of the orthopaedic trauma Association, october 8, 2003, salt lake city [on-line]. Available at http:\\www.hwbf.org/ota/am/ota03/bssf/OTA03BG1.htm. Accessed December 20, 2011

  42. Friedman CD (2009) Trauma: basic principles of craniofacial bone healing and repair. In: Papel ID (ed) Facial plastic and reconstructive surgery. Thieme medical publisher, New York, p 920

    Google Scholar 

  43. Hu WW, Ward BB, Wang Z, Krebsbach PH (2010) Bone regeneration in defects compromised by radiotherapy. J Dent Res 89:77

    Article  PubMed  Google Scholar 

  44. Reuther T, Schuster T, Mende U, Kubler A (2003) Osteoradionecrosis of the jaws as a side effect of radiotherapy of head and neck tumour patients: a report of a thirty year retrospective review. Int J Oral Maxillofac Surg 32:289

    Article  PubMed  CAS  Google Scholar 

  45. Clokie C, Sandor G (2008) Reconstruction of 10 major mandibular defects using bioimplants containing BMP-7. J Can Dent Assoc 74:67

    PubMed  Google Scholar 

  46. Schuckert K, Jopp S, Teoh S (2009) Mandibular defect reconstruction using three-dimensional polycaprolactone scaffold in combination with platelet-rich plasma and recombinant human bone morphogenetic protein-2: de novo synthesis of bone in a single case. Tissue Eng Part A 15:493

    Article  PubMed  CAS  Google Scholar 

  47. Elshahat A (2006) Correction of craniofacial skeleton contour defects using bioactive glass particles. Egypt J Plast Reconstr Surg 30:113

    Google Scholar 

  48. Trautvetter W, Kaps C, Schmelzeisen R, Sauerbier S, Sittinger M (2011) Tissue-engineered polymer-based periosteal bone grafts for maxillary sinus augmentation: five-year clinical results. J Oral Maxillofac Surg 69:2753

    Article  PubMed  Google Scholar 

  49. Yazar S (2007) Selection of recipient vessels in microsurgical free tissue reconstruction of head and neck defects. Microsurgery 27:588

    Article  PubMed  Google Scholar 

  50. Eweida A, Nabawi A, Marei M, Khalil MR, Elhammady H (2011) Mandibular reconstruction using an axially vascularized tissue-engineered construct. ASIR 5:2

    PubMed  Google Scholar 

  51. The Guide for the Care and Use of Laboratory Animals., Published by the National Institutes of Health (NIH publication No. 85-23, revised 1996)

  52. Viateeau V, Avramoglou D, Guillemin G et al (2008) Sourcebook of models for biomedical research. In: Conn PM (ed) Animal models for bone tissue engineering purposes. Humana press, New Jersey, pp 725–763

    Google Scholar 

  53. Daculsi G, LeGeros RZ, Nery E, Lynch K, Kerebel B (1989) Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization. J Biomed Mater Res 23:883

    Article  PubMed  CAS  Google Scholar 

  54. Daculsi G, LeGeros RZ, Heughebaert M, Barbieux I (1990) Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics. Calcif Tissue Int 6:20

    Article  Google Scholar 

  55. de Oliveira RS, Brigato R, Madureira JF, Cruz AA, de Mello Filho FV, Alonso N, Machado HR (2007) Reconstruction of a large complex skull defect in a child: a case report and literature review. Childs Nerv Syst 23:1097

    Article  PubMed  Google Scholar 

  56. Lobo SE, Arinzeh TL (2010) Biphasic Calcium Phosphate Ceramics for Bone Regeneration and Tissue Engineering Applications. Materials 3:815

    Article  CAS  Google Scholar 

  57. Kuhne JH, Bartl R, Frisch B et al (1994) Bone formation in coralline hydroxyapatite. Effects of pore size studied in rabbits. Acta Ortop Scand 65:246

    Article  CAS  Google Scholar 

  58. Druecke D, Langer S, Lamme E, Pieper J, Garkovic M, Steinau HU, Homann HH (2004) Neovascularization of polyether ester block-copolymer scaffolds in vivo: long term investigations using intravital fluorescent microscopy. J Biomed Mater Res 68:10

    Article  Google Scholar 

  59. Menger MD, Hammersen F, Walter P, Messmer K (1990) Neovascularization of prosthetic vascular grafts. Quantitative analysis of angiogenesis and microhemodynamics by means of intravital microscopy. Thorac Cardiovasc Surg 38:139

    Article  PubMed  CAS  Google Scholar 

  60. Marx RE (2001) Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent 10:225

    Article  PubMed  CAS  Google Scholar 

  61. Eppley B, Pietrzak W, Blanton M (2006) Platelet-Rich Plasma: A Review of Biology and Applications in Plastic Surgery. Plastic Reconstructive Surgery 118:147

    Article  Google Scholar 

  62. Whitman DH, Berry RL, Green DM (1997) Platelet gel: an autologous alternative to fibrin glue with applications in oral and maxillofacial surgery. J Oral Maxillofac Surg 55:1294

    Article  PubMed  CAS  Google Scholar 

  63. Freymiller EG, Aghaloo TL (2004) Platelet-rich plasma: ready or not? J Oral Maxillofac Surg 62:484

    Article  PubMed  Google Scholar 

  64. Plachokova AS, Nikolidakis D, Mulder J, Jansen JA, Creugers NH (2008) Effect of platelet-rich plasma on bone regeneration in dentistry: a systematic review. Clin Oral Implants Res 19:539

    Article  PubMed  Google Scholar 

  65. Nikolidakis D, Jansen JA (2008) The biology of platelet-rich plasma and its application in oral surgery: literature review. Tissue Eng Part B 14:249

    Article  CAS  Google Scholar 

  66. Hu ZM, Peel SA, Ho SK, Sándor GK, Clokie CM (2009) Comparison of platelet-rich plasma, bovine BMP, and rhBMP-4 on bone matrix protein expression in vitro. Growth Factors 27:280

    Article  PubMed  CAS  Google Scholar 

  67. Urist MR (1965) Bone: formation by autoinduction. Science 150:893

    Article  PubMed  CAS  Google Scholar 

  68. Raida M, Heymann AC, Günther C, Niederweiser D (2006) Role of bone morphogenetic protein 2 in the crosstalk between endothelial progenitor cells and mesenchymal stem cells. Int J Mol Med 18:735

    PubMed  CAS  Google Scholar 

  69. Cenni E, Avnet S, Fotia C, Salerno M, Baldrini N (2010) Platelet-rich plasma impairs osteoclast generation from human precursors of peripheral blood. J Orthop Res 28:792

    PubMed  CAS  Google Scholar 

  70. Park EJ, Kim ES, Weber HP, Wright RF, Mooney DJ (2008) Improved bone healing by angiogenic factor-enriched platelet-rich plasma and its synergistic enhancement by bone morphogenetic protein-2. Int J Oral Maxillofac Implants 23:818

    PubMed  Google Scholar 

  71. Schuckert KH, Jopp S, Osadnik M (2010) Modern bone regeneration instead of bone transplantation: a combination of recombinant human bone morphogenetic protein-2 and platelet-rich plasma for the vertical augmentation of the maxillary bone, a single case report. Tissue Eng Part C 16:1335

    Article  Google Scholar 

  72. Meyer RA Jr, Gruber HE, Howard BA, Tabor OB Jr, Murakami T, Kwiatkowski TC, Wozney JM, Hanley EN Jr (1999) Safety of recombinant human bone morphogenetic protein-2 after spinal laminectomy in the dog. Spine 24:747

    Article  PubMed  Google Scholar 

  73. McKay B, Sandhu HS (2002) Use of recombinant human bone morphogenetic protein-2 in spinal fusion applications. Spine 27:66

    Article  Google Scholar 

  74. Hori Y, Tamai S, Okuda H et al (1979) Blood vessel transplantation to bone. J Hand Surg Am 4:23

    PubMed  CAS  Google Scholar 

  75. Bochud RC, Büchler U (1994) Kienböck’s disease, early stage 3-height reconstruction and core revascularization of the lunate. J Hand Surg Br 19:466

    Article  PubMed  CAS  Google Scholar 

  76. Tamai S, Yajima H, Ono H (1993) Revascularization procedures in the treatment of Kienböck’s disease. Hand Clin 9:455

    PubMed  CAS  Google Scholar 

  77. Akita S, Tamai N, Myoui A, Nishikawa M, Kaito T, Takaoka K, Yoshikawa H (2004) Capillary vessel network integration by inserting a vascular pedicle enhances bone formation in tissue-engineered bone using interconnected porous hydroxyapatite ceramics. Tissue Eng 10:789

    Article  PubMed  CAS  Google Scholar 

  78. Kloeters O, Berger I, Ryssel H, Megerle K, Leimer U, Germann G (2011) Revitalization of cortical bone allograft by application of vascularized scaffolds seeded with osteogenic induced adipose tissue derived stem cells in a rabbit model. Arch Orthop Trauma Surg 131(10):1459–1466

    Article  PubMed  Google Scholar 

  79. Lovett M, Lee K, Edwards A, Kaplan D (2009) Vascularization strategies for tissue engineering. Tissue Eng 15:353

    Article  CAS  Google Scholar 

  80. Warnke P, Springer I, Wiltfang J, Acil Y, Eufinger H, Wehmöller M, Russo P, Bolte H, Sherry E, Behrens E, Terheyden H (2004) Growth and transplantation of a custom vascularised bone graft in a man. Lancet 364:766

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The mandibular reconstruction study was funded by a research grant from the University of Alexandria (Alexandria University Research Enhancement Program; Alex REP, code HLTH-09). The authors would like to acknowledge with great appreciation the team of Abou Elnaga Laboratories in Alexandria, namely Dr. Sahdy Foad for help with the PRP protocol standardization. The animal experiments were approved by the ethics committee of the University of Alexandria and complied with the current laws of the local governmental authorities.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Eweida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eweida, A.M., Nabawi, A.S., Elhammady, H.A. et al. Axially vascularized bone substitutes: a systematic review of literature and presentation of a novel model. Arch Orthop Trauma Surg 132, 1353–1362 (2012). https://doi.org/10.1007/s00402-012-1550-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00402-012-1550-3

Keywords

Navigation