Skip to main content
Log in

Rheological and electrical properties of EVA copolymer filled with bamboo charcoal

  • Original Contribution
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The electrical and rheological properties of an ethylene vinyl acetate (EVA) copolymer filled with bamboo charcoal were investigated. The composites were prepared by melt process in an internal batch mixer. Size distribution analysis showed that d(50) and d(90) values of the bamboo charcoal particles are 12.7 and 40 μm, respectively, with a mean diameter of 22 μm. Scanning electron microscopy proved that the particles of bamboo charcoal present a rectangular shape. The electrical percolation threshold was observed at 0.18 volume fraction (35 wt%) of bamboo. Beyond the percolation threshold, a considerable increase in electrical properties was observed up to a limit value of 10-2 S/m. The rheological percolation was studied from different rheological models. As a result, the rheological percolation threshold was observed at 0.3 volume fraction (50 wt%) of bamboo charcoal contents. So, the electrical percolation occurs before the rheological percolation. This is principally due to the filler’s characteristics such as the specific surface area, the aspect ratio, and the surface properties. Finally, the bamboo charcoal confers high electrical properties to the EVA composite without inducing strong changes in its viscoelastic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Balberg I (1987) Tunneling and nonuniversal conductivity in composite materials. Phys Rev Lett 59:1305–1308

    Article  CAS  Google Scholar 

  • Balberg I (2002) A comprehensive picture of the electrical phenomena in carbon black–polymer composites. Carbon 40:139–143

    Article  CAS  Google Scholar 

  • Barrau S, Demont P, Peigney A, Laurent C, Lacabanne C (2003) DC and AC conductivity of carbon nanotubes–polyepoxy composites. Macromolecules 36:5187–5194

    Article  CAS  Google Scholar 

  • Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69:1486–1498

    Article  CAS  Google Scholar 

  • Bose S, Bhattacharyya AR, Kulkarni AR, Poetschke P (2009) Electrical, rheological and morphological studies in co-continuous blends of polyamide 6 and acrylonitrile–butadiene–styrene with multiwall carbon nanotubes prepared by melt blending. Compos Sci Technol 69:365–372

    Article  CAS  Google Scholar 

  • Carrot C, Majesté JC, Olalla B, Fulchiron R (2010) On the use of the model proposed by Leonov for the explanation of a secondary plateau of the loss modulus in heterogeneous polymer–filler systems with agglomerates. Rheol Acta 49:513–527

    Article  CAS  Google Scholar 

  • Carrot C, Olalla B, Fulchiron R (2012) Relaxation of loose agglomerates of magnesium hydroxide in a polymer melt. Polymer 53:5560–5567

    Article  CAS  Google Scholar 

  • Cassagnau P (2008) Melt rheology of organoclay and fumed silica nanocomposites. Polymer 49:2183–2196

    Article  CAS  Google Scholar 

  • Chapartegui M, Markaide N, Florez S, Elizetxea C, Fernandez M, Santamaria A (2010) Specific rheological and electrical features of carbon nanotube dispersions in an epoxy matrix. Compos Sci Technol 70:879–884

    Article  CAS  Google Scholar 

  • Charman M, Leonardi F, Dominguez S, Bissuel C, Derail C (2011) Dispersion of multiwalled carbon nanotubes in a rubber matrix using an internal mixer: effects on rheological and electrical properties. J Polym Sci Part B: Polym Phys 49:1597–1604

    Article  CAS  Google Scholar 

  • Chattopadhyay SK, Khandal RK, Uppaluri R, Ghoshal AK (2010) Bamboo fiber reinforced polypropylene composites and their mechanical, thermal, and morphological properties. J Appl Polymer Sci 119:1619–1626

    Article  Google Scholar 

  • Choi SS (2002) Difference in bound rubber formation of silica and carbon black with styrene-butadiene rubber. Polym Adv Technol 13:466–474

    Article  CAS  Google Scholar 

  • Choi SS (2004) Effect of bound rubber on characteristics of highly filled styrene–butadiene rubber compounds with different types of carbon black. J Appl Polymer Sci 93:1001–1006

    Article  CAS  Google Scholar 

  • Dang ZM, Nan CW, Xie D, Zhang YH, Tjong SC (2004) Dielectric behavior and dependence of percolation threshold on the conductivity of fillers in polymer-semiconductor composites. Appl Phys Lett 85:97–99

    Article  CAS  Google Scholar 

  • Dang Z-M, Shehzad K, Zha J-W, Mujahid A, Hussain T, Nie J, Shi C-Y (2011) Complementary percolation characteristics of carbon fillers based electrically percolative thermoplastic elastomer composites. Compos Sci Technol 72:28–35

    Article  CAS  Google Scholar 

  • Du FM, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37:9048–9055

    Article  CAS  Google Scholar 

  • Dyre JC, Schroder TB (2000) Universality of ac conduction in disordered solids. Rev Mod Phys 72:873–892

    Article  Google Scholar 

  • German RM (1989) Particle packing characteristics. Metal Powder Industries Federation, Princeton

    Google Scholar 

  • Huang S, Liu Z, Yin C, Wang Y, Gao Y, Chen C, Yang M (2012) Dynamic electrical and rheological percolation in isotactic poly(propylene)/carbon black composites. Macromol Mater Eng 297:51–59

    Article  CAS  Google Scholar 

  • Jonscher A (1977) The universal dielectric response. Nature 267:673–679

    Article  CAS  Google Scholar 

  • Kantarelis E, Liu JL, Yang WH, Blasiak W (2010) Sustainable valorization of bamboo via high-temperature steam pyrolysis for energy production and added value materials. Energy Fuel 24:6142–6150

    Article  CAS  Google Scholar 

  • Kovacs JZ, Velagala BS, Schulte K, Bauhofer W (2007) Two percolation thresholds in carbon nanotube epoxy composites. Compos Sci Technol 67:922–928

    Article  CAS  Google Scholar 

  • Krieger IM (1972) Rheology of monodisperse latices. Adv Colloid Interface Sci 3:111–136

    Article  CAS  Google Scholar 

  • Krieger IM, Dougherty TG (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans Soc Rheol 3:137–152

    Article  CAS  Google Scholar 

  • Krishnamoorti R, Giannelis EP (1997) Rheology of end-tethered polymer layered silicate nanocomposites. Macromolecules 30:4097–4102

    Article  CAS  Google Scholar 

  • Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New York

    Google Scholar 

  • Leboeuf M, Ghamri N, Brule B, Coupez T, Vergnes B (2008) Influence of mixing conditions on rheological behavior and electrical conductivity of polyamides filled with carbon black. Rheol Acta 47:201–212

    Article  CAS  Google Scholar 

  • Lee SH, Cho E, Jeon SH, Youn JR (2007) Rheological and electrical properties of polypropylene composites containing functionalized multi-walled carbon nanotubes and compatibilizers. Carbon 45:2810–2822

    Article  CAS  Google Scholar 

  • Lertwimolnun W, Vergnes B (2006) Effect of processing conditions on the formation of polypropylene/organoclay nanocomposites in a twin screw extruder. Polym Eng Sci 46:314–323

    Article  CAS  Google Scholar 

  • Levchenko V, Mamunya Y, Boiteux G, Lebovka M, Alcouffe P, Seytre G, Lebedev E (2011) Influence of organo-clay on electrical and mechanical properties of PP/MWCNT/OC nanocomposites. Eur Polym J 47:1351–1360

    Article  CAS  Google Scholar 

  • Leyva ME, Barra GMO, Moreira ACF, Soares BG, Khastgir D (2003) Electric, dielectric, and dynamic mechanical behavior of carbon black/styrene–butadiene–styrene composites. J Polym Sci Part B: Polym Phys 41:2983–2997

    Article  CAS  Google Scholar 

  • Li QS, Xu MS, Zhou GJ, Wang LQ (2010) Preparation and characterization of white bamboo charcoal PET fiber. Chin Chem Lett 21:995–998

    Article  CAS  Google Scholar 

  • Martins JN, Bassani TS, Barra GMO, Oliveira RVB (2010) Electrical and rheological percolation in poly(vinylidene fluoride)/multi-walled carbon nanotube nanocomposites. Polym Int 60:430–435

    Article  Google Scholar 

  • Mierczynska A, Mayne-L’Hermite M, Boiteux G, Jeszka JK (2007) Electrical and mechanical properties of carbon nanotube/ultrahigh-molecular-weight polyethylene composites prepared by a filler prelocalization method. J Appl Polymer Sci 105:158–168

    Article  CAS  Google Scholar 

  • Mingjie G (2004) Manual for bamboo charcoal production and utilization. Bamboo Engineering Research Center. E. Nanjing Forestry University

  • Pishvaei M, Graillat C, Cassagnau P, McKenna TF (2006) Modelling the zero shear viscosity of bimodal high solid content latex: calculation of the maximum packing fraction. Chem Eng Sci 61:5768–5780

    Article  CAS  Google Scholar 

  • Poetschke P, Abdel-Goad M, Pegel S, Jehnichen D, Mark JE, Zhou D, Heinrich G (2010) Comparisons among electrical and rheological properties of melt-mixed composites containing various carbon nanostructures. J Macromol Sci Part A-Pure Appl Chem 47:12–19

    Article  CAS  Google Scholar 

  • Qu M, Deng F, Kalkhoran SM, Gouldstone A, Robisson A, Van Vliet KJ (2011) Nanoscale visualization and multiscale mechanical implications of bound rubber interphases in rubber-carbon black nanocomposites. Soft Matter 7:1066–1077

    Article  CAS  Google Scholar 

  • Sherman RD, Middleman LM, Jacobs SM (1983) Electron-transport processes in conductor-filled polymers. Polym Eng Sci 23:36–46

    Article  Google Scholar 

  • Sohi NJS, Bhadra S, Khastgir D (2011) The effect of different carbon fillers on the electrical conductivity of ethylene vinyl acetate copolymer-based composites and the applicability of different conductivity models. Carbon 49:1349–1361

    Article  CAS  Google Scholar 

  • Song Y, Zheng Q (2011) Application of two phase model to linear viscoelasticity of reinforced rubbers. Polymer 52:593–596

    Article  CAS  Google Scholar 

  • Stauffer D (1979) Scaling theory of percolation clusters. Phys Rep-Rev Sect Phys Lett 54:1–74

    Google Scholar 

  • Stauffer D (1985) Introduction to percolation theory. Taylor and Francis, London

    Book  Google Scholar 

  • Sumfleth J, Buschhorn ST, Schulte K (2011) Comparison of rheological and electrical percolation phenomena in carbon black and carbon nanotube filled epoxy polymers. J Mater Sci 46:659– 669

    Article  CAS  Google Scholar 

  • Vignaux-Nassiet V, Allal A, Montfort JP (1998) Emulsion models and rheology of filled polymers. Eur Polym J 34:309–322

    Article  CAS  Google Scholar 

  • Zhou Z, Wang S, Lu L, Zhang Y, Zhang Y (2007) Preparation and rheological characterization of poly(methyl methacrylate)/functionalized multi-walled carbon nanotubes composites. Compos Sci Technol 67:1861–1869

    Article  CAS  Google Scholar 

  • Zou JF, Yu ZZ, Pan YX, Fang XP, Ou YC (2002) Conductive mechanism of polymer/graphite conducting composites with low percolation threshold. J Polym Sci Part B: Polym Phys 40:954– 963

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Bamboo charcoal particles have been kindly supplied by the company “Bamboo Fibers Technology” (Lahontan, France). The authors would like to thank the “Centre Technologique des Microstructures” of the University Lyon 1 (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Cassagnau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belaïd, S., Boiteux, G. & Cassagnau, P. Rheological and electrical properties of EVA copolymer filled with bamboo charcoal. Rheol Acta 52, 75–84 (2013). https://doi.org/10.1007/s00397-012-0669-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00397-012-0669-z

Keywords

Navigation