Skip to main content
Log in

Porous ultrafine fibers via a salt-induced electrospinning method

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A salt-induced electrospinning method to produce porous polymer ultrafine fibers was reported in this work. Scanning electron microscopy, energy dispersive spectrometer, and BET surface area measurement were employed to evaluate the morphology, the element distribution, and the surface area of fibers, respectively. According to the investigation result, pores on the fiber were induced by water-soluble salt during electrospinning process in a humid spinning environment. There was no porous structure on the fiber surface when water-insoluble salt was used in a wet electrospinning environment or when water-soluble salt was used in a dry electrospinning environment. Compared with pure fibers, the average surface area of fibers containing salt increased significantly due to the porous structure. The possible mechanism of the porous structure induced by salt was proposed. Water-solubility salt and humid environment were considered as the key roles in the formation of porous structure. This method provided a new way to form porous structure during electrospinning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Edwards MD, Mitchell GR, Mohan SD, Olley RH (2010) Eur Polym J 46:1175

    Article  CAS  Google Scholar 

  2. Reneker DH, Fong H (2006) Polymeric Nanofibers. ACS Symposium Series 918. Oxford University Press (USA)

  3. Dai XS, Shivkumar S (2008) Mater Sci Eng C 28:336

    Google Scholar 

  4. Zhao XY, Wang CY, Zhang K, Zhou Z, Zhu MF (2010) Colloid Polym Sci 288:907

    Article  CAS  Google Scholar 

  5. McKee MG, Layman JM, Cashion MP, Long TE (2006) Science 311:353

    Article  CAS  Google Scholar 

  6. Li XR, Zhang H, Li H, Yuan XY (2010) Colloid Polym Sci 288:1113

    Article  CAS  Google Scholar 

  7. Dayal P, Liu J, Kumar S, Kyu T (2007) Macromolecules 40:7689

    Article  CAS  Google Scholar 

  8. Anthony LA (2008) Wiley 250

  9. Jiang X, Lim SH, Mao HQ, Chew SY (2010) Exp Neurol 223:86

    Article  Google Scholar 

  10. Lim SH, Mao HQ (2009) Adv Drug Deliver Rev 61:1084

    Article  CAS  Google Scholar 

  11. Xie JW, Li XR, Xia YN (2008) Macromol Rapid Commun 29:1775

    Article  CAS  Google Scholar 

  12. Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma ZW, Ramaseshan R (2006) Mater Today 9:40

    Article  CAS  Google Scholar 

  13. Moroni L, De Wijn JR, Van Blitterswijk CA (2008) J Biomat Sci-Polym E 19:543

    Article  CAS  Google Scholar 

  14. Thomas V, Dean DR, Vohra YK (2006) Curr Nanosci 2:155

    CAS  Google Scholar 

  15. Ji LW, Zhang XW (2009) Nanotechnology 20:155705

    Article  Google Scholar 

  16. Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M et al (2001) Adv Mater 13:70

    Article  CAS  Google Scholar 

  17. Zhang YZ, Feng Y, Huang ZM, Ramakrishna S, Lim CT (2006) Nanotechnology 17:901

    Article  CAS  Google Scholar 

  18. You Y, Youk JH, Lee SW, Min BM, Lee SJ, Park WH (2006) Mater Lett 60:757

    Article  CAS  Google Scholar 

  19. Li L, Hsieh YL (2006) Carbohyd Res 341:374

    Article  CAS  Google Scholar 

  20. Pai CL, Boyce MC, Rutledge GC (2009) Macromolecules 42:2102

    Article  CAS  Google Scholar 

  21. Gupta A, Saquing CD, Afshari M, Tonelli AE, Khan SA, Kotek R (2009) Macromolecules 42:709

    Article  CAS  Google Scholar 

  22. Mit-uppatham C, Nithitanakul M, Supaphol P (2004) Macromol Chem Phys 205:2327

    Article  CAS  Google Scholar 

  23. Bai J, Li YX, Li MY, Gao JL, Zhang XM, Wang SG et al (2008) Colloid Surface A 318:259

    Article  CAS  Google Scholar 

  24. Cho YW, An SW, Song SC (2006) Macromol Chem Phys 207:412

    Article  CAS  Google Scholar 

  25. Schmid A, Fujii S, Armes SP (2006) Langmuir 22:4923

    Article  CAS  Google Scholar 

  26. Lin Z, Woodroof MD, Ji LW, Liang YZ, Krause W, Zhang XW (2010) J Appl Polym Sci 116:895

    Article  CAS  Google Scholar 

  27. Park JH, Karim MR, Kim IK, Cheong IW, Kim JW, Bae DG et al (2010) Colloid Polym Sci 288:115

    Article  CAS  Google Scholar 

  28. Zhang QC, Zhang YJ, Wei Q, Wang XJ, Liu J, Yang J et al (2011) J Appl Polym Sci 120:2648

    Article  CAS  Google Scholar 

  29. Megelski S, Stephens JS, Chase DB, Rabolt JF (2002) Macromolecules 35:8456

    Article  CAS  Google Scholar 

  30. Srinivasarao M, Collings D, Philips A, Patel S (2001) Science 292:79

    Article  CAS  Google Scholar 

  31. Casper CL, Stephens JS, Tassi NG, Chase DB, Rabolt JF (2004) Macromolecules 37:573

    Article  CAS  Google Scholar 

  32. Xu YY, Xu ZK (2005) Chemical Industry Press 117

  33. Zhang QC, Liu J, Wang XJ, Li MX, Yang J (2010) Colloid Polym Sci 288:1385

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully appreciate the financial support by the National High Technology Foundation of China (Grant No. 2007AA03Z561). We are particularly indebted to Dr. Chaoliang Zhang for assistance of SEM testing in State Key Laboratory of Oral Diseases.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jie Yang or Xiaojun Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 459 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Li, M., Liu, J. et al. Porous ultrafine fibers via a salt-induced electrospinning method. Colloid Polym Sci 290, 793–799 (2012). https://doi.org/10.1007/s00396-011-2563-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-011-2563-0

Keywords

Navigation