Skip to main content
Log in

Myocardial ischemic protection in natural mammalian hibernation

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Hibernating myocardium is an important clinical syndrome protecting the heart with chronic myocardial ischemia, named for its assumed resemblance to hibernating mammals in winter. However, the effects of myocardial ischemic protection have never been studied in true mammalian hibernation, which is a unique strategy for surviving extreme winter environmental stress. The goal of this investigation was to test the hypothesis that ischemic stress may also be protected in woodchucks as they hibernate in winter. Myocardial infarction was induced by coronary occlusion followed by reperfusion in naturally hibernating woodchucks in winter with and without hibernation and in summer, when not hibernating. The ischemic area at risk was similar among groups. Myocardial infarction was significantly less in woodchucks in winter, whether hibernating or not, compared with summer, and was similar to that resulting after ischemic preconditioning. Whereas several genes were up or downregulated in both hibernating woodchuck and with ischemic preconditioning, one mechanism was unique to hibernation, i.e., activation of cAMP-response element binding protein (CREB). When CREB was upregulated in summer, it induced protection similar to that observed in the woodchuck heart in winter. The cardioprotection in hibernation was also mediated by endothelial nitric oxide synthase, rather than inducible nitric oxide synthase. Thus, the hibernating woodchuck heart is a novel model to study cardioprotection for two major reasons: (1) powerful cardioprotection occurs naturally in winter months in the absence of any preconditioning stimuli, and (2) it resembles ischemic preconditioning, but with novel mechanisms, making this model potentially useful for clinical translation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bienengraeber MW, Weihrauch D, Kersten JR, Pagel PS, Warltier DC (2005) Cardioprotection by volatile anesthetics. Vascul Pharmacol 42:243–252. doi:10.1016/j.vph.2005.02.005

    Article  CAS  PubMed  Google Scholar 

  2. Bolli R (2000) The late phase of preconditioning. Circ Res 87:972–983. doi:10.1161/01.RES.87.11.972

    Article  CAS  PubMed  Google Scholar 

  3. Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83:1153–1181. doi:10.1152/physrev.00008.2003

    Article  CAS  PubMed  Google Scholar 

  4. Carroll R, Yellon DM (1999) Myocardial adaptation to ischaemia—the preconditioning phenomenon. Int J Cardiol 68(Suppl 1):S93–S101

    Article  PubMed  Google Scholar 

  5. Costa AD, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen MV, Critz SD (2005) Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ Res 97:329–336. doi:10.1161/01.RES.0000178451.08719.5b

    Article  CAS  PubMed  Google Scholar 

  6. Cypess AM, Zhang H, Schulz TJ, Huang TL, Espinoza DO, Kristiansen K, Unterman TG, Tseng YH (2011) Insulin/IGF-I regulation of necdin and brown adipocyte differentiation via CREB- and FoxO1-associated pathways. Endocrinology 152:3680–3689. doi:10.1210/en.2011-1229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Darbera L, Chenoune M, Lidouren F, Ghaleh B, Cohen MV, Downey JM, Berdeaux A, Tissier R (2012) Adenosine and opioid receptors do not trigger the cardioprotective effect of mild hypothermia. J Cardiovasc Pharmacol Ther 17:173–180. doi:10.1177/1074248411412969

    Article  CAS  PubMed  Google Scholar 

  8. Dawn B, Bolli R (2002) Role of nitric oxide in myocardial preconditioning. Ann N Y Acad Sci 962:18–41. doi:10.1111/j.1749-6632.2002.tb04053.x

    Article  CAS  PubMed  Google Scholar 

  9. Depre C, Kim SJ, John AS, Huang Y, Rimoldi OE, Pepper JR, Dreyfus GD, Gaussin V, Pennell DJ, Vatner DE, Camici PG, Vatner SF (2004) Program of cell survival underlying human and experimental hibernating myocardium. Circ Res 95:433–440. doi:10.1161/01.RES.0000138301.42713.18

    Article  CAS  PubMed  Google Scholar 

  10. Eisen A, Fisman EZ, Rubenfire M, Freimark D, McKechnie R, Tenenbaum A, Motro M, Adler Y (2004) Ischemic preconditioning: nearly two decades of research. A comprehensive review. Atherosclerosis 172:201–210. doi:10.1016/S0021-9150(03)00238-7

    Article  CAS  PubMed  Google Scholar 

  11. Eliseev RA, Vanwinkle B, Rosier RN, Gunter TE (2004) Diazoxide-mediated preconditioning against apoptosis involves activation of cAMP-response element-binding protein (CREB) and NFkappaB. J Biol Chem 279:46748–46754. doi:10.1074/jbc.M406217200

    Article  CAS  PubMed  Google Scholar 

  12. Fedorov VV, Glukhov AV, Sudharshan S, Egorov Y, Rosenshtraukh LV, Efimov IR (2008) Electrophysiological mechanisms of antiarrhythmic protection during hypothermia in winter hibernating versus nonhibernating mammals. Heart Rhythm 5:1587–1596. doi:10.1016/j.hrthm.2008.08.030

    Article  PubMed Central  PubMed  Google Scholar 

  13. Freeland K, Boxer LM, Latchman DS (2001) The cyclic AMP response element in the Bcl-2 promoter confers inducibility by hypoxia in neuronal cells. Brain Res Mol Brain Res 92:98–106. doi:10.1016/S0169-328X(01)00158-9

    Article  CAS  PubMed  Google Scholar 

  14. Grabek KR, Karimpour-Fard A, Epperson LE, Hindle A, Hunter LE, Martin SL (2011) Multistate proteomics analysis reveals novel strategies used by a hibernator to precondition the heart and conserve ATP for winter heterothermy. Physiol Genomics 43:1263–1275. doi:10.1152/physiolgenomics.00125.2011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Gross ER, Gross GJ (2006) Ligand triggers of classical preconditioning and postconditioning. Cardiovasc Res 70:212–221. doi:10.1016/j.cardiores.2005.12.019

    Article  CAS  PubMed  Google Scholar 

  16. Hale SL, Kloner RA (2011) Mild hypothermia as a cardioprotective approach for acute myocardial infarction: laboratory to clinical application. J Cardiovasc Pharmacol Ther 16:131–139. doi:10.1177/1074248410387280

    Article  PubMed  Google Scholar 

  17. Heusch G (1998) Hibernating myocardium. Physiol Rev 78:1055–1085

    CAS  PubMed  Google Scholar 

  18. Heusch G, Schulz R, Rahimtoola SH (2005) Myocardial hibernation: a delicate balance. Am J Physiol Heart Circ Physiol 288:H984–H999. doi:10.1152/ajpheart.01109.2004

    Article  CAS  PubMed  Google Scholar 

  19. Ichiki T (2006) Role of cAMP response element binding protein in cardiovascular remodeling: good, bad, or both? Arterioscler Thromb Vasc Biol 26:449–455. doi:10.1161/01.ATV.0000196747.79349.d1

    Article  CAS  PubMed  Google Scholar 

  20. Kamm KE, Zatzman ML, Jones AW, South FE (1979) Maintenance of ion concentration gradients in the cold in aorta from rat and ground squirrel. Am J Physiol 237:C17–C22

    CAS  PubMed  Google Scholar 

  21. Kudej RK, Ghaleh B, Sato N, Shen YT, Bishop SP, Vatner SF (1998) Ineffective perfusion-contraction matching in conscious, chronically instrumented pigs with an extended period of coronary stenosis. Circ Res 82:1199–1205. doi:10.1161/01.RES.82.11.1199

    Article  CAS  PubMed  Google Scholar 

  22. Kudej RK, Kim SJ, Shen YT, Jackson JB, Kudej AB, Yang GP, Bishop SP, Vatner SF (2000) Nitric oxide, an important regulator of perfusion-contraction matching in conscious pigs. Am J Physiol Heart Circ Physiol 279:H451–H456

    CAS  PubMed  Google Scholar 

  23. Kudej RK, Vatner SF (2003) Nitric oxide-dependent vasodilation maintains blood flow in true hibernating myocardium. J Mol Cell Cardiol 35:931–935. doi:10.1016/S0022-2828(03)00174-3

    Article  CAS  PubMed  Google Scholar 

  24. Kuzuya T, Hoshida S, Yamashita N, Fuji H, Oe H, Hori M, Kamada T, Tada M (1993) Delayed effects of sublethal ischemia on the acquisition of tolerance to ischemia. Circ Res 72:1293–1299. doi:10.1161/01.RES.72.6.1293

    Article  CAS  PubMed  Google Scholar 

  25. Kwok WM, Aizawa K (2004) Preconditioning of the myocardium by volatile anesthetics. Curr Med Chem Cardiovasc Hematol Agents 2:249–255. doi:10.2174/1568016043356318

    Article  CAS  PubMed  Google Scholar 

  26. Li H, Liu T, Chen W, Jain MR, Vatner DE, Vatner SF, Kudej RK, Yan L (2013) Proteomic mechanisms of cardioprotection during mammalian hibernation in woodchucks, Marmota monax. J Proteome Res 12:4221–4229. doi:10.1021/pr400580f

    Article  CAS  PubMed  Google Scholar 

  27. Marber MS, Latchman DS, Walker JM, Yellon DM (1993) Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 88:1264–1272. doi:10.1161/01.CIR.88.3.1264

    Article  CAS  PubMed  Google Scholar 

  28. Mayr B, Montminy M (2001) Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2:599–609. doi:10.1038/35085068

    Article  CAS  PubMed  Google Scholar 

  29. McKean T, Mendenhall W (1996) Comparison of the responses to hypoxia, ischaemia and ischaemic preconditioning in wild marmot and laboratory rabbit hearts. J Exp Biol 199:693–697

    CAS  PubMed  Google Scholar 

  30. Murphy E (2004) Primary and secondary signaling pathways in early preconditioning that converge on the mitochondria to produce cardioprotection. Circ Res 94:7–16. doi:10.1161/01.RES.0000108082.76667.F4

    Article  CAS  PubMed  Google Scholar 

  31. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136. doi:10.1161/01.CIR.74.5.1124

    Article  CAS  PubMed  Google Scholar 

  32. Pratt PF Jr, Wang C, Weihrauch D, Bienengraeber MW, Kersten JR, Pagel PS, Warltier DC (2006) Cardioprotection by volatile anesthetics: new applications for old drugs? Curr Opin Anaesthesiol 19:397–403. doi:10.1097/01.aco.0000236139.31099.b5

    Article  PubMed  Google Scholar 

  33. Redel A, Stumpner J, Smul TM, Lange M, Jazbutyte V, Ridyard DG, Roewer N, Kehl F (2013) Endothelial nitric oxide synthase mediates the first and inducible nitric oxide synthase mediates the second window of desflurane-induced preconditioning. J Cardiothorac Vasc Anesth 27:494–501. doi:10.1053/j.jvca.2012.04.015

    Article  CAS  PubMed  Google Scholar 

  34. Riccio A, Ahn S, Davenport CM, Blendy JA, Ginty DD (1999) Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 286:2358–2361. doi:10.1126/science.286.5448.2358

    Article  CAS  PubMed  Google Scholar 

  35. Schultz JE, Gross GJ (2001) Opioids and cardioprotection. Pharmacol Ther 89:123–137. doi:10.1016/S0163-7258(00)00106-6

    Article  CAS  PubMed  Google Scholar 

  36. Schwartz BG, Kloner RA, Thomas JL, Bui Q, Mayeda GS, Burstein S, Hale SL, Economides C, French WJ (2012) Therapeutic hypothermia for acute myocardial infarction and cardiac arrest. Am J Cardiol 110:461–466. doi:10.1016/j.amjcard.2012.03.048

    Article  PubMed  Google Scholar 

  37. Storey KB, Storey JM (2010) Metabolic rate depression: the biochemistry of mammalian hibernation. Adv Clin Chem 52:77–108

    Article  CAS  PubMed  Google Scholar 

  38. Tissier R, Chenoune M, Ghaleh B, Cohen MV, Downey JM, Berdeaux A (2010) The small chill: mild hypothermia for cardioprotection? Cardiovasc Res 88:406–414. doi:10.1093/cvr/cvq227

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Tissier R, Ghaleh B, Cohen MV, Downey JM, Berdeaux A (2012) Myocardial protection with mild hypothermia. Cardiovasc Res 94:217–225. doi:10.1093/cvr/cvr315

    Article  CAS  PubMed  Google Scholar 

  40. Whittle AJ, Carobbio S, Martins L, Slawik M, Hondares E, Vazquez MJ, Morgan D, Csikasz RI, Gallego R, Rodriguez-Cuenca S, Dale M, Virtue S, Villarroya F, Cannon B, Rahmouni K, Lopez M, Vidal-Puig A (2012) BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149:871–885. doi:10.1016/j.cell.2012.02.066

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Wijns W, Vatner SF, Camici PG (1998) Hibernating myocardium. N Engl J Med 339:173–181. doi:10.1056/NEJM199807163390307

    Article  CAS  PubMed  Google Scholar 

  42. Xue B, Coulter A, Rim JS, Koza RA, Kozak LP (2005) Transcriptional synergy and the regulation of Ucp1 during brown adipocyte induction in white fat depots. Mol Cell Biol 25:8311–8322. doi:10.1128/MCB.25.18.8311-8322.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Yang C, Talukder MA, Varadharaj S, Velayutham M, Zweier JL (2013) Early ischaemic preconditioning requires Akt- and PKA-mediated activation of eNOS via serine1176 phosphorylation. Cardiovasc Res 97:33–43. doi:10.1093/cvr/cvs287

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Yang X, Cohen MV, Downey JM (2010) Mechanism of cardioprotection by early ischemic preconditioning. Cardiovasc Drugs Ther 24:225–234. doi:10.1007/s10557-010-6236-x

    Article  PubMed Central  PubMed  Google Scholar 

  45. Yang X, Liu Y, Yang XM, Hu F, Cui L, Swingle MR, Honkanen RE, Soltani P, Tissier R, Cohen MV, Downey JM (2011) Cardioprotection by mild hypothermia during ischemia involves preservation of ERK activity. Basic Res Cardiol 106:421–430. doi:10.1007/s00395-011-0165-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Yatani A, Kim SJ, Kudej RK, Wang Q, Depre C, Irie K, Kranias EG, Vatner SF, Vatner DE (2004) Insights into cardioprotection obtained from study of cellular Ca2+ handling in myocardium of true hibernating mammals. Am J Physiol Heart Circ Physiol 286:H2219–H2228. doi:10.1152/ajpheart.01096.2003

    Article  CAS  PubMed  Google Scholar 

  47. Zhao ZQ, Vinten-Johansen J (2002) Myocardial apoptosis and ischemic preconditioning. Cardiovasc Res 55:438–455. doi:10.1016/S0008-6363(02)00442-X

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by funding from National Institutes of Health (5R01HL091781, 5R21HL97264, 5R01HL093481, 1R01HL106511, 5P01AG027211, 1R01HL102472, 5R01HL033107, 5T32HL069752, 5R01HL095888, 5P01HL069020).

Conflict of interest

No conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen F. Vatner.

Additional information

L. Yan and R. K. Kudej contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, L., Kudej, R.K., Vatner, D.E. et al. Myocardial ischemic protection in natural mammalian hibernation. Basic Res Cardiol 110, 9 (2015). https://doi.org/10.1007/s00395-015-0462-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-015-0462-0

Keywords

Navigation