Skip to main content

Advertisement

Log in

Preponderance of inhibitory versus excitatory intramuscular nerve fibres in human chagasic megacolon

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Introduction

Megacolon, chronic dilation of a colonic segment, is a frequent sign of Chagas disease. It is accompanied by an extensive neuron loss which, as shown recently, results in a partial, selective survival of nitrergic myenteric neurons. Here, we focused on the balance of intramuscular excitatory (choline acetyltransferase [ChAT]-immunoreactive) and inhibitory (neuronal nitric oxide synthase [NOS]- as well as vasoactive intestinal peptide [VIP]-immunoreactive) nerve fibres.

Materials and methods

From surgically removed megacolonic segments of seven patients, three sets of cryosections (from non-dilated oral, megacolonic and non-dilated anal parts) were immunhistochemically triple-stained for ChAT, NOS and VIP. Separate area measurements of nerve profiles within the circular and longitudinal muscle layers, respectively, were compared with those of seven non-chagasic control patients. Additionally, wholemounts from the same regions were stained for NOS, VIP and neurofilaments (NF).

Results

The intramuscular nerve fibre density was significantly reduced in all three chagasic segments. The proportions of inhibitory (NOS only, VIP only, or NOS/VIP-coimmunoreactive) intramuscular nerves were 68 %/58 % (circular/longitudinal muscle, respectively) in the controls and increased to 75 %/69 % (oral parts), 84 %/76 % (megacolonic) and 87 %/94 % (anal) in chagasic specimens. In the myenteric plexus, NF-positive neurons co-staining for NOS and VIP also increased proportionally. The almost complete lack of dendritic structures in ganglia of chagasic specimens hampered morphological identification.

Discussion and conclusion

We suggest that preponderance of inhibitory, intramuscular nerve fibres may be one factor explaining the chronic dilation. Since the nerve fibre imbalance is most pronounced in the anal, non-dilated segment, other components of the motor apparatus (musculature, interstitial cells, submucosal neurons) have to be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Clayton J (2010) Chagas disease 101. Nature 465(7301):4–5

    Article  Google Scholar 

  2. Köberle F (1968) Chagas’ disease and Chagas’ syndromes: the pathology of American trypanosomiasis. Adv Parasitol 6:63–116

    Article  PubMed  Google Scholar 

  3. Furness JB (2006) The enteric nervous system. Blackwell, Oxford

    Google Scholar 

  4. Olsson C, Holmgren S (2011) Autonomic control of gut motility: a comparative view. Auton Neurosci 165:80–101

    Article  PubMed  CAS  Google Scholar 

  5. Jabari S, da Silveira AB, de Oliveira EC, Neto SG, Quint K, Neuhuber W, Brehmer A (2011) Partial, selective survival of nitrergic neurons in chagasic megacolon. Histochem Cell Biol 135(1):47–57

    Article  PubMed  CAS  Google Scholar 

  6. Grider JR (1993) Interplay of VIP and nitric oxide in regulation of the descending relaxation phase of peristalsis. Am J Physiol 264(2 Pt 1):334–340

    Google Scholar 

  7. Brehmer A, Schrödl F, Neuhuber W (2006) Morphology of VIP/nNOS-immunoreactive myenteric neurons in the human gut. Histochem Cell Biol 125(5):557–565

    Article  PubMed  CAS  Google Scholar 

  8. Schuy J, Schlabrakowski A, Neuhuber W, Brehmer A (2011) Quantitative estimation and chemical coding of spiny type I neurons in human intestines. Cells Tissues Organs 193(3):195–206

    Article  PubMed  CAS  Google Scholar 

  9. Schnell S, Staines WA, Wessendorf MW (1999) Reduction of lipofuscin-like autofluorescence in fluorescently labeled tissue. J Histochem Cytochem 47(6):719–730

    Article  PubMed  CAS  Google Scholar 

  10. Brehmer A, Blaser B, Seitz G, Schrödl F, Neuhuber W (2004) Pattern of lipofuscin pigmentation in nitrergic and non-nitrergic, neurofilament immunoreactive myenteric neuron types of human small intestine. Histochem Cell Biol 121(1):13–20

    Article  PubMed  CAS  Google Scholar 

  11. Ganns D, Schrödl F, Neuhuber W, Brehmer A (2006) Investigation of general cytoskeletal markers to estimate numbers and proportions of neurons in the human intestine. Histol Histopathol 21(1):41–51

    PubMed  CAS  Google Scholar 

  12. Fabbro DL, Streiger ML, Arias ED, Bizai ML, del Barco M, Amicone NA (2007) Trypanocide treatment among adults with chronic Chagas disease living in Santa Fe city (Argentina), over a mean follow-up of 21 years: parasitological, serological and clinical evolution. Rev Soc Bras Med Trop 40:1–10

    Article  PubMed  Google Scholar 

  13. Escribà JM, Ponce E, Romero Ade D, Vinas PA, Marchiol A, Bassets G, Palma PP, Lima MA, Zuniga C, Ponce C (2009) Treatment and seroconversion in a cohort of children suffering from recent chronic Chagas infection in Yoro, Honduras. Mem Inst Oswaldo Cruz 104:986–991

    Article  PubMed  Google Scholar 

  14. Murphy EM, Defontgalland D, Costa M, Brookes SJ, Wattchow DA (2007) Quantification of subclasses of human colonic myenteric neurons by immunoreactivity to Hu, choline acetyltransferase and nitric oxide synthase. Neurogastroenterol Motil 19(2):126–134

    Article  PubMed  CAS  Google Scholar 

  15. Beck M, Schlabrakowski A, Schrödl F, Neuhuber W, Brehmer A (2009) ChAT and NOS in human myenteric neurons: co-existence and co-absence. Cell Tissue Res 338(1):37–51

    Article  PubMed  CAS  Google Scholar 

  16. Dzienis-Koronkiewicz E, Debek W, Chyczewski L (2005) Use of synaptophysin immunohistochemistry in intestinal motility disorders. Eur J Pediatr Surg 15(6):392–398

    Article  PubMed  CAS  Google Scholar 

  17. da Silveira AB, D’ Avila Reis D, de Oliveira EC, Neto SG, Luguetti AO, Poole D, Correa-Oliveira R, Furness JB (2007) Neurochemical coding of the enteric nervous system in chagasic patients with megacolon. Dig Dis Sci 52(10):2877–2883

    Article  PubMed  Google Scholar 

  18. Ribeiro U Jr, Safatle-Ribeiro AV, Habr-Gama A, Gama-Rodrigues JJ, Sohn J, Reynolds JC (1998) Effect of Chagas’ disease on nitric oxide-containing neurons in severely affected and unaffected intestine. Dis Colon Rectum 41(11):1411–1417

    Article  PubMed  Google Scholar 

  19. Seilhean D, De Girolami U, Gray F (2004) Basic pathology of the central nervous system. In: Gray F, De Girolami U, Poirier J (eds) Manual of basic neuropathology. Butterworth Heinemann, Philadelphia, pp 1–20

    Chapter  Google Scholar 

  20. Bernard CE, Gibbons SJ, Gomez-Pinilla PJ, Lurken MS, Schmalz PF, Roeder JL, Linden D, Cima RR, Dozois EJ, Larson DW, Camilleri M, Zinsmeister AR, Pozo MJ, Hicks GA, Farrucia G (2009) Effect of age on the enteric nervous system of the human colon. Neurogastroenterol Motil 21:746–e46

    Article  PubMed  CAS  Google Scholar 

  21. Rivera LR, Poole DP, Thacker M, Furness JB (2011) The involvement of nitric oxide synthase neurons in enteric neuropathies. Neurogastroenterol Motil 23(11):980–988

    Article  PubMed  CAS  Google Scholar 

  22. Ekblad E, Bauer AJ (2004) Role of vasoactive intestinal peptide and inflammatory mediators in enteric neuronal plasticity. Neurogastroenterol Motil 16(1):123–128

    Article  PubMed  Google Scholar 

  23. Arranz A, Abad C, Juarranz Y, Leceta J, Martinez C, Gomariz RP (2008) Vasoactive Intestinal Peptide as a Healing Mediator in Crohn’s Disease. Neuroimmunomodulation 15:46–53

    PubMed  CAS  Google Scholar 

  24. Ben-Horin S, Chowers Y (2008) Neuroimmunology of the gut: physiology, pathology and pharmacology. Curr Opin Pharmacol 8(4):490–495

    Article  PubMed  CAS  Google Scholar 

  25. Pozo D, Delgado M (2004) The many faces of VIP in neuroimmunology: a cytokine rather a neuropeptide? FASEB J 18(12):1325–1334

    Article  PubMed  CAS  Google Scholar 

  26. Wilson AJ, Llewellyn-Smith IJ, Furness JB, Costa M (1987) The source of the nerve fibres forming the deep muscular and circular muscle plexuses in the small intestine of the guinea-pig. Cell Tissue Res 247(3):497–504

    Article  PubMed  CAS  Google Scholar 

  27. Uemura S, Hurley MR, Hutson JM, Chow CW (1998) Distributions of substance P- and VIP-immunoreactive nerve fibres in the colonic circular muscle in children. Pediatr Surg Int 14(1–2):66–70

    Article  PubMed  CAS  Google Scholar 

  28. Llewellyn-Smith IJ, Furness JB, Gibbins IL, Costa M (1988) Quantitative ultrastructural analysis of enkephalin-, substance P-, and VIP-immunoreactive nerve fibers in the circular muscle of the guinea pig small intestine. J Comp Neurol 272(1):139–148

    Article  PubMed  CAS  Google Scholar 

  29. King SK, Sutcliffe JR, Ong SY, Lee M, Koh TL, Wong SQ, Farmer PJ, Peck CJ, Stanton MP, Keck J, Cook DJ, Chow CW, Hutson JM, Southwell BR (2010) Substance P and vasoactive intestinal peptide are reduced in right transverse colon in pediatric slow-transit constipation. Neurogastroenterol Motil 22(8):883–892

    Article  PubMed  CAS  Google Scholar 

  30. Koch TR, Carney JA, Go L, Go VL (1988) Idiopathic chronic constipation is associated with decreased colonic vasoactive intestinal peptide. Gastroenterology 94(2):300–310

    PubMed  CAS  Google Scholar 

  31. Hutson JM, Chow CW, Borg J (1996) Intractable constipation with a decrease in substance P-immunoreactive fibres: is it a variant of intestinal neuronal dysplasia? J Pediatr Surg 31(4):580–583

    Article  PubMed  CAS  Google Scholar 

  32. da Silveira AB, Adad SJ, Correa-Oliveira R, Furness JB, D’Avila Reis D (2007) Morphometric study of eosinophils, mast cells, macrophages and fibrosis in the colon of chronic chagasic patients with and without megacolon. Parasitology 134(Pt 6):789–796

    PubMed  Google Scholar 

  33. Iantorno G, Bassotti G, Kogan Z, Lumi CM, Cabanne AM, Fisogni S, Varrica LM, Bilder CR, Munoz JP, Liserre B, Morelli A, Villanacci V (2007) The enteric nervous system in chagasic and idiopathic megacolon. Am J Surg Pathol 31(3):460–468

    Article  PubMed  Google Scholar 

  34. Mayer B, John M, Böhme E (1990) Purification of a Ca2+/calmodulin-dependent nitric oxide synthase from porcine cerebellum. FEBS 277(1,2):215–219

    Article  CAS  Google Scholar 

  35. Mayer B, John M, Heinzel B, Werner ER, Wachter H, Schultz G, Böhme E (1991) Brain nitric oxide synthase is a biopterin- and flavin-containing multi-functional oxido-reductase. FEBS 288(1,2):187–191

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The excellent technical assistance of Karin Löschner and Stefanie Link as well as Anita Hecht, Andrea Hilpert, Hedwig Symowski and Inge Zimmermann (all Erlangen, Germany) is gratefully acknowledged. This work was supported by funds from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), FIOCRUZ (Fundação Oswaldo Cruz), PAPES V (Programa de Apoio a Pesquisa Estratégica em Saúde) and Deutsche Forschungsgemeinschaft (BR 1815/4-1).

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Jabari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jabari, S., da Silveira, A.B.M., de Oliveira, E.C. et al. Preponderance of inhibitory versus excitatory intramuscular nerve fibres in human chagasic megacolon. Int J Colorectal Dis 27, 1181–1189 (2012). https://doi.org/10.1007/s00384-012-1500-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-012-1500-0

Keywords

Navigation