Skip to main content

Advertisement

Log in

Multiple sea-ice states and abrupt MOC transitions in a general circulation ocean model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Sea ice has been suggested, based on simple models, to play an important role in past glacial–interglacial oscillations via the so-called “sea-ice switch” mechanism. An important requirement for this mechanism is that multiple sea-ice extents exist under the same land ice configuration. This hypothesis of multiple sea-ice extents is tested with a state-of-the-art ocean general circulation model coupled to an atmospheric energy–moisture-balance model. The model includes a dynamic-thermodynamic sea-ice module, has a realistic ocean configuration and bathymetry, and is forced by annual mean forcing. Several runs with two different land ice distributions represent present-day and cold-climate conditions. In each case the ocean model is initiated with both ice-free and fully ice-covered states. We find that the present-day runs converge approximately to the same sea-ice state for the northern hemisphere while for the southern hemisphere a difference in sea-ice extent of about three degrees in latitude between the different runs is observed. The cold climate runs lead to meridional sea-ice extents that are different by up to four degrees in latitude in both hemispheres. While approaching the final states, the model exhibits abrupt transitions from extended sea-ice states and weak meridional overturning circulation, to less extended sea ice and stronger meridional overturning circulation, and vice versa. These transitions are linked to temperature changes in the North Atlantic high-latitude deep water. Such abrupt changes may be associated with Dansgaard–Oeschger events, as proposed by previous studies. Although multiple sea ice states have been observed, the difference between these states is not large enough to provide a strong support for the sea-ice-switch mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abbot D, Voigt A, Koll D (2011) The Jormungand global climate state and implications for neoproterozoic glaciations. J Geophys Res 116:D18,103

    Google Scholar 

  • Adcroft A, Campin JM, Hill C, Marshall J (2004) Implementation of an atmosphere-ocean general circulation model on the expanded spherical cube. Mon Weath Rev 132(12):2845–2863

    Article  Google Scholar 

  • Alley RB, Meese D, Shuman C, Gow AJ, Taylor K, Grootes P, White J, Ram M, Waddington ED, Mayewski P, Zielinski G (1993) Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature 362:527–529

    Article  Google Scholar 

  • Arzel O, Colin de Verdiére A, England MH (2010) The role of oceanic heat transport and wind-stress forcing in abrupt millennial-scale climate transitions. J Clim 23(9):2233–2256

    Article  Google Scholar 

  • Arzel O, England MH, Saenko O (2011) The impact of wind-stress feedback on the stability of the Atlantic meridional overturning circulation. J Clim 24:1965–1984

    Article  Google Scholar 

  • Ashkenazy Y, Tziperman E (2004) Are the 41 kyr glacial oscillations a linear response to Milankovitch forcing? Quat Sci Rev 23(18–19):1879–1890

    Article  Google Scholar 

  • Ashkenazy Y, Tziperman E (2007) A wind-induced thermohaline circulation hysteresis and millennial variability regimes. J Phys Oceanogr 37(10):2446–2457

    Article  Google Scholar 

  • Bond G, Heinrich H, Broecker W, Laberie L, McManus J, Andrews J, Huon S, Jantschik R, Clasen S, Simet C, Tedesco K, Klas M, Bonani G, Ivy S (1992) Evidence for massive discharges of icebergs into the North Atlantic Ocean during the last glacial period. Nature 360(6401):245–249

    Article  Google Scholar 

  • Bryan K (1984) Accelerating the convergence to equilibrium of ocean-climate models. J Phys Oceanogr 14:666–673

    Article  Google Scholar 

  • Campin JM, Marshall J, Ferreira D (2008) Sea-ice ocean coupling using a rescaled vertical coordinate z*. Ocean Model 24(1–2):1–14

    Article  Google Scholar 

  • Colin de Verdiére A, Te Raa L (2010) Weak oceanic heat transport as a cause of the instability of glacial climates. Clim Dyn 35(7–8):1237–1256

    Article  Google Scholar 

  • Dansgaard W, White J, Johnsen S (1989) The abrupt termination of the Younger Dryas climate event. Nature 339:532–534

    Article  Google Scholar 

  • Eisenman I, Wettlaufer J (2009) Nonlinear threshold behavior during the loss of Arctic sea ice. Proc Natl Acad Sci USA 106:28–32

    Article  Google Scholar 

  • EPICA-Community-Members (2004) Eight glacial cycles from an antarctic ice core. Nat Biotechnol 429:623–628

    Article  Google Scholar 

  • Fanning AF, Weaver AJ (1996) An atmospheric energy-moisture balance model: climatology and interpentadal climate change, and coupling to an OGCM. J Geophys Res 101(D10):15111–15125

    Article  Google Scholar 

  • Ferreira D, Marshall J, Rose BEJ (2011) Climate determinism revisited: multiple equilibria in a complex climate model. J Clim 24:992–1012

    Article  Google Scholar 

  • Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20(1):150–155

    Article  Google Scholar 

  • Ghil M (1994) Cryothermodynamics: the chaotic dynamics of paleoclimate. Physica D 77:130–159

    Article  Google Scholar 

  • Gildor H (2003) When Earth’s freezer door is left ajar. EOS 84(23):215

    Article  Google Scholar 

  • Gildor H, Tziperman E (2000) Sea ice as the glacial cycles climate switch: role of seasonal and orbital forcing. Paleoceanography 15:605–615

    Article  Google Scholar 

  • Gildor H, Tziperman E (2001) Physical mechanisms behind biogeochemical glacial-interglacial CO 2 variations. Geophys Res Lett 28:2421–2424

    Article  Google Scholar 

  • Gildor H, Tziperman E (2003) Sea-ice switches and abrupt climate change. Philos Trans R Soc London Ser A Math Phys Eng Sci 361(1810):1935–1942

    Article  Google Scholar 

  • Heinrich H (1988) Origin and consequences of cyclic ice rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quat Res 29:142–152

    Article  Google Scholar 

  • Hibler WD (1980) Modeling a variable thickness sea ice cover. Mon Weath Rev 108:1943–1973

    Article  Google Scholar 

  • Holland MM, Bitz CM, Hunke EC, Lipscomb WH, Schramm JL (2006a) Influence of the sea ice thickness distribution on polar climate in CCSM3. J Clim 19(11):2398–2414

    Article  Google Scholar 

  • Holland MM, CM Bitz, Tremblay B (2006b) Future abrupt reductions in the summer Arctic sea ice. Geophys Res Lett 33:L23,503

    Article  Google Scholar 

  • Imbrie J, Hays J, Martinson D, McIntyre A, Mix A, Morley J, Pisias N, Prell W, Shackleton N (1984) The orbital theory of pleistocene climate: support from a revised chronology of the marine δ18 O record. In: Berger A, Imbrie J, Hays J, Kukla G, Saltzman B (eds) Milankovitch and climate, Part I, D. Reidel, Dordrecht, pp 269–305

    Google Scholar 

  • Kaspi Y, Sayag R, Tziperman E (2004) A “triple sea-ice state” mechanism for the abrupt warming and synchronous ice sheet collapses during Heinrich events. Paleoceanography 19(3):PA3004. doi:10.1029/2004PA001009

    Article  Google Scholar 

  • Langen PL, Alexeev VA (2004) Multiple equilibria and asymmetric climates in the ccm3 coupled to an oceanic mixed layer with thermodynamic sea ice. Geophys Res Lett 31:L04201

    Article  Google Scholar 

  • Large WG, Mcwilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary-layer parameterization. Rev Geophys 32(4):363–403

    Article  Google Scholar 

  • Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008) Tipping elements in the Earth’s climate system. Proc Natl Acad Sci USA 105:1786–1793

    Article  Google Scholar 

  • Levitus SE (1982) Climatological atlas of the world ocean. NOAA Professional Paper 13 US Government Printing Office, Washington, DC

    Google Scholar 

  • Li C, Battisti D, Schrag D, Tziperman E (2005) Abrupt climate shifts in Greenland due to displacements of the sea ice edge. Geophys Res Lett 32:L19702

    Article  Google Scholar 

  • Lindsay RW, Zhang J (2005) The thinning of arctic sea ice, 1988 2003: have we passed a tipping point?. J Clim 18:4879–4894

    Article  Google Scholar 

  • Losch M, Menemenlis D, Heimbach P, Campin JM, Hill C (2010) On the formulation of sea-ice models. part 1: effects of different solver implementations and parameterizations. Ocean Model 33:129–144

    Article  Google Scholar 

  • Loving JL, Vallis GK (2005) Mechanisms for climate variability during glacial and interglacial periods. Paleoceanography 20(4):PA4024

    Article  Google Scholar 

  • Manabe S, Stouffer RJ (1999) The role of the thermohaline circulation in climate. Tellus 51:91–109

    Google Scholar 

  • Marotzke J, Botzet M (2007) Present-day and ice-covered equilibrium states in a comprehensive climate model. Geophys Res Lett 34:L16704

    Article  Google Scholar 

  • Marshall J, Adcroft A, Hill C, Perelman L, Heisey C (1997a) A finite-volume, incompressible Navier stokes model for studies of the ocean on parallel computers. J Geophys Res 102, C3:5753–5766

    Article  Google Scholar 

  • Marshall J, Hill C, Perelman L, Adcroft A (1997b) Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J Geophys Res 102(C3):5733–5752

    Article  Google Scholar 

  • Maslanik JA, Fowler C, Stroeve J, Drobot S, Zwally J, Yi D, Emery W (2007) A younger, thinner Arctic ice cover: Increased potential for rapid, extensive sea-ice loss. Geophys Res Lett 34:L24501

    Article  Google Scholar 

  • Merryfield WJ, Holland MM, Monahan AH (2008) Multiple equilibria and abrupt transitions in Arctic summer sea ice extent. In: DeWeaver E, Bitz CM, Tremblay B (eds) Arctic sea ice decline: observations, projections, mechanisms, and implications. Geophysical Monograph Series, vol 180. AGU, Washington, D.C., pp 151–174

  • MITgcm Group (2010) MITgcm user manual. Online documentation, MIT/EAPS, Cambridge, MA 02139, USA, http://mitgcm.org/public/r2_manual/latest/online_documents/manual.html

  • Mix AC, Bard E, Schneider R (2001) Environmental processes of the ice age: land, oceans, glaciers (EPILOG). Quat Sci Rev 20:627–657

    Article  Google Scholar 

  • Overpeck JT, Strum M, Francis JA, Perovich DK, Serreze MC, Benner R, Carmack EC, Chapin FS, Gerlach SC, Hamilton LC, Hinzman LD, Holland M, Huntington HP, Key JR, Lloyd AH, McDonald GM, McFadden J, Noone D, Prowse TD, Schlosser P, Vörösmarty C (2005) Arctic system on trajectory to new, seasonally ice-free state. EOS Trans Am Geophys Union 86(34):309–313

    Article  Google Scholar 

  • Peltier WR (1994) Ice age paleotopography. Science 265:195–201

    Article  Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    Article  Google Scholar 

  • Ram M, Koenig G (1997) Continuous dust concentration profile of pre Holocene ice from the Greenland ice sheet project 2 ice core: dust stadials, interstadials, and the Eemian. J Geophys Res 102:26641–26648

    Article  Google Scholar 

  • Redi MH (1982) Oceanic isopycnal mixing by coordinate rotation. J Phys Oceanogr 12:1154–1158

    Article  Google Scholar 

  • Sayag R, Tziperman E, Ghil M (2004) Rapid switch-like sea ice growth and land ice–sea ice hysteresis. Paleoceanography 19:PA1021. doi:10.1029/2003PA000946

    Article  Google Scholar 

  • Schmittner A, Meissner KJ, Eby M, Weaver AJ (2003) Forcing of the deep ocean circulation in simulations of the last glacial maximum. Paleoceanography 17(2):1015

    Google Scholar 

  • Semtner AJ (1976) A model for the thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr 6

  • Serreze MC, Francis JA (2006) The Arctic amplication debate. Clim Change 76:241–264

    Article  Google Scholar 

  • Tietsche S, Notz D, Jungclaus JH, Marotzke J (2011) Recovery mechanisms of Arctic summer sea ice. Geophys Res Lett 38:L02707

    Article  Google Scholar 

  • Timmermann A, Gildor H, Schulz M, Tziperman E (2003) Coherent resonant millennial-scale climate oscillations triggered by glacial meltwater pulses. J Clim 16:2569–2585

    Article  Google Scholar 

  • Tziperman E, Gildor H (2003) The mid-Pleistocene climate transition and the source of asymmetry between glaciation and deglaciation times. Paleoceanography 18(1). doi:10.1029/2001PA000627

  • Tziperman E, Raymo M, Huybers P, Wunsch C (2006) Consequences of pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to Milankovitch forcing. Paleoceanography 21:PA4206. doi:10.1029/2005PA001,241

    Article  Google Scholar 

  • Wang Z, Mysak L (2006) Glacial abrupt climate changes and Dansgaard–Oeschger oscillations in a coupled climate model. Paleoceanography 21(2):PA2001

    Article  Google Scholar 

  • Weaver AJ, Eby M, Wiebe EC, Bitz CM, Duffy PB, Ewen TL, A F Fanning MMH, MacFadyen A, HD Matthews KM, Saenko O, Schmittner A, Wang H, Yoshimori M (2001) The UVic earth system climate model: model description, climatology and application to past, present and future climates. Atmos Ocean 39:361–428

    Article  Google Scholar 

  • Winton M (1993) Deep decoupling oscillations of the oceanic thermohaline circulation. In: Peltier WR (ed), Ice in the climate system, NATO ASI series I: global environmental, change, vol 12, Springer, Berlin, pp 417–432

    Google Scholar 

  • Winton M, Sarachik ES (1993) Thermohaline oscillation induced by strong steady salinity forcing of ocean general circulation models. J Phys Oceanogr 23:1389–1410

    Article  Google Scholar 

  • Wunsch C (2003) The spectral description of climate change including the 100 ky energy. Clim Dyn 20:353–363. doi:10.1007/s00382-002-0279-z

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Israel-US Binational Science foundation. ET was supported by the NSF climate dynamics program, grants ATM-0754332 and ATM-0902844 and thanks the Weizmann institute for its hospitality during parts of this work. We thank Ian Eisenman for helpful discussions and suggestions and André Paul for help with implementing the EMBM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosef Ashkenazy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashkenazy, Y., Losch, M., Gildor, H. et al. Multiple sea-ice states and abrupt MOC transitions in a general circulation ocean model. Clim Dyn 40, 1803–1817 (2013). https://doi.org/10.1007/s00382-012-1546-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1546-2

Keywords

Navigation