Skip to main content
Log in

Tropical variability and stratospheric equatorial waves in the IPSLCM5 model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The atmospheric variability in the equatorial regions is analysed in the Earth System Model pre-industrial simulation done at IPSL in the framework of CMIP5. We find that the model has an interannual variability of about the right amplitude and temporal scale, when compared to the El-Niño Southern Oscillation (ENSO), but that is too confined to the western Pacific. At the intra-seasonal periods, the model variability lacks of large-scale organisation, and only produces one characteristic Madden-Julian Oscillation every 10 winters typically. At shorter time-scales and in the troposphere, the model has Rossby and Kelvin Convectively Coupled Equatorial Waves (CCEWs), but underestimates the Kelvin CCEWs signal on OLR. In the model stratosphere, a composite analysis shows that the Temperature and velocities fluctuations due to the Kelvin waves are quite realistic. In the model nevertheless, the stratospheric waves are less related to the convection than in the observations, suggesting that their forcing by the midlatitudes plays a larger role. Still in the model, the Kelvin waves are not predominantly occurring during the life cycle of the tropospheric Kelvin CCEWs, a behaviour that we find to be dominant in the observations. The composite analysis is also used to illustrate how the waves modify the zonal mean-flow, and to show that the model Kelvin waves are too weak in this respect. This illustrates how a model can have a reasonable Kelvin waves signal on the velocities and temperature, but can at the same time underestimate their amplitude to modify the mean flow. We also use this very long simulation to establish that in the model, the stratospheric equatorial waves are significantly affected by ENSO, hence supporting the idea that the ENSO can have an influence on the Quasi-Biennial Oscillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anstey JA, Shepherd TG, Scinocca JF (2010) Influence of the Quasi-Biennial oscillation on the extratropical winter stratosphere in an atmospheric general circulation model and in reanalysis data. J Atmos Sci 67:1402–1419

    Article  Google Scholar 

  • Baldwin MP, Gray LJ, Hamilton K, Haynes PH, Randel WJ, Holton JR, Alexander MJ, Hirota I, Horinouchi T, Jones DBA, Kinnersely JS, Marquardt C, Sato K, Takahashi M (2001) The Quasi-biennial oscillation. Rev Geophys 39:179–229

    Article  Google Scholar 

  • Baldwin MP, Dunkerton TJ (1999) Downward propagation of the Arctic Oscillation from the stratosphere to the troposphere. J Geophys Res 104:30,937–30,946

    Article  Google Scholar 

  • Barnett TP (1992) The interaction of multiple time scales in the tropical system. J Clim 4:269–285

    Article  Google Scholar 

  • Bony S, Emanuel KA (2001) A parameterization of the cloudiness associated with cumulus convection; evaluation using TOGA COARE data. J Atmos Sci 58:3158–3183

    Article  Google Scholar 

  • Boville BA, Randell WR (1992) Equatorial waves in a stratospheric GCM: effects of vertical resolution. J Atmos Sci 49:785–8001

    Article  Google Scholar 

  • Cagnazzo C, Manzini E (2009) Impact of the stratosphere on the winter tropospheric teleconnections between ENSO and the North Atlantic and European Region. J Clim 22:1223–1238. doi:10.1175/2008JCLI2549.1

    Article  Google Scholar 

  • Calvo N, Giorgetta MA, Garcia-Herrera R, Manzini E (2009) Nonlinearity of the combined warm ENSO and QBO effects on the Northern Hemisphere polar vortex in MAECHAM5 simulations. J Geophys Res-Atmos 114:D13109. doi:10.1029/2008JD011445

    Article  Google Scholar 

  • Chiodi AM, Harrison DE (2010) Characterizing Warm-ENSO variability in the Equatorial Pacific: an OLR perspective. J Clim 23:2428–2439

    Article  Google Scholar 

  • Christiansen B (2001) Downward propagation of zonal mean zonal wind anomalies from the stratosphere to the troposphere: model and reanalysis. J Geophys Res 106:27,307–27,322

    Article  Google Scholar 

  • Douville H (2009) Stratospheric polar vortex influence on Northern Hemisphere winter climate variability. Geophys Res Lett 36:L18703. doi:10.1029/2009GL039334

    Article  Google Scholar 

  • Dunkerton TJ (1997) The role of gravity waves in the quasi-biennial oscillation. J Geophys Res 102:26,053–26,076

    Google Scholar 

  • Dufresne JL et al. (2011) Overview of the IPSL-CM5 earth system model with an emphasis on model and forcing changes from CMIP3 to CMIP5. Clim Dyn. In preparation Climate Dynamics, this special issue

  • Emanuel KA (1993) A cumulus representation based on the episodic mixing model: the importance of mixing and microphysics in predicting humidity. AMS Meteorol Monogr 24(46):185–192

    Google Scholar 

  • Ern M, Preusse P, Krebsbach M, Mlynczak MG, Russell JM (2008) Equatorial wave analysis from SABER and ECMWF temperatures. Atmos Chem Phys 8:845–869

    Article  Google Scholar 

  • Ern M, Preuse P (2009) Quantification of the contribution of equatorial Kelvin Waves to the QBO wind reversal in the stratosphere. Geophys Res Lett 36:L21801. doi:10.1029/2009GL040493

    Article  Google Scholar 

  • Fraedrich K, Muller K (1992) Climate anomalies in europe associated with ENSO extremes. Int J Climatol 1:25–31

    Article  Google Scholar 

  • Giorgetta MA, Manzini E, Roeckner E, Esch M, Bengston L (2006) Climatology and forcing of the quasi-biennal oscillation in the MAECHAM5 model. J Clim 19:3882–3901

    Article  Google Scholar 

  • Goulet L, Duvel J-P (2000) A new approach to detect and characterize intermittent atmospheric oscillations: application to the intraseasonal oscillation. J Atmos Sci 57:2397–2416

    Article  Google Scholar 

  • Grimshaw R (1975) Nonlinear internal gravity waves and their interaction with the mean wind. J Atmos Sci 32:1779–1793

    Article  Google Scholar 

  • Hamming RW (1983) Kaiser windows and optimization. Digital Filters, Prentice Hall, Englewood Cliffs, NJ, pp 185–207

  • Hardiman SC, Butchart N, Haynes PH, Hare SHE (2007) A note on forced versus internal variability of the stratosphere. Geophys Res Lett 34:L12803. doi:10.1029/2007GL029726

    Article  Google Scholar 

  • Hardiman SC, Butchard SCN, Osprey SM, Gray LJ, Buschell AC, Hinton TJ (2010) The climatology of the middle atmosphere in a vertically extended version of the Met Office’s climate model. Part I: mean state. J Atmos Sci 67:1509–1525

    Article  Google Scholar 

  • Hendon HH, Wheeler MC (2008) Some space-time spectral analysis of tropical convection and planetary scale waves. J Atmos Sci 65:2936–2948

    Article  Google Scholar 

  • Holton JR, Tan HC (1980) The influence of the equatorial quasi-biennial oscillation on the global circulation at 50mb. J Atmos Sci 37:2200–2208

    Article  Google Scholar 

  • Horinouchi T, Pawson S, Shibata K, Manzini E, Giorgetta MA, Sassi F, Wilson RJ, Hamilton K, DeGrandpe J, Scaife AA (2003) Tropical cumulus convection and upward propagating waves in middle-atmospheric GCMs. J Atmos Sci 60:2765–2782

    Article  Google Scholar 

  • Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne J-L, Fairhead L, Filiberti M-A, Friedlingstein P, Grandpeix J-Y, Krinner G, Levan P, Lott F (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27:787–813. doi:10.1007/s00382-006-0158-0

    Article  Google Scholar 

  • Hourdin F, Foujols M-A, Codron F, Guemas V, Dufresne J-L, Bony S, Denvil S, Guez L, Lott F, Ghattas J, Braconnot P, Marti O, Meurdesoif Y, Bopp L (2011) Climate and sensitivity of the IPSL-CM5A coupled model: impact of the LMDZ atmospheric grid configuration. Submitted to Climate Dynamics, this special issue

  • Kawatani Y, Sato K, Dunkerton TD, Watanabe S, Miyahara S, Takahashi M (2010) The roles of the equatorial trapped waves and inertia-gravity waves in driving the Quasi-Biennial Oscillation. Part I: zonal mean wave forcing. J Atmos Sci 67:963–980

    Article  Google Scholar 

  • Kessler WS (2001) EOF representation of the Madden-Julian oscillation and its connection with ENSO. J Clim 14:3055–3061

    Article  Google Scholar 

  • Leloup J, Lengaigne M, Boulanger JP (2008) Twentieth century ENSO characteristics in the IPCC database. Clim Dyn 30:277–291

    Article  Google Scholar 

  • Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77:1275–1277

    Google Scholar 

  • Lott F, Robertson AW, Ghil M (2004) Mountain torques and northern-hemisphere low-frequency variability. Part I: hemispheric aspects. J Atmos Sci 61:1259–1271

    Article  Google Scholar 

  • Lott F, Fairhead L, Hourdin F, Levan P (2005) The stratospheric version of LMDz: dynamical climatologies, arctic oscillation, and impact on the surface climate. Clim Dyn 25:851–868. doi:10.1007/s00382-005-0064-x

    Article  Google Scholar 

  • Lott F, Kuttippurath J, Vial F (2009) A Climatology of the Gravest waves in the equatorial lower and middle stratosphere: method and comparison between the ERA-40 re-analysis and the LMDz-GCM. J Atmos Sci 66:1327–1346

    Article  Google Scholar 

  • Manzini E, Hamilton K (1993) Middle atmospheric traveling waves forced by latent and convective heating. J Atmos Sci 50:2180–2200

    Article  Google Scholar 

  • Marti O, Braconnot P, Bellier J, Benshila R, Bony S, Brockmann P, Cadule P, Caubel A, Denvil S, Dufresne J-L, Fairhead L, Filiberti M-A, Foujols M-A, Fichefet T, Friedlingstein P, Goosse H, Grandpeix J-Y, Hourdin F, Krinner G, Levy C, Madec G, Musat I, de Noblet N, Polcher J, Talandier C (2005) The new IPSL climate system model: IPSL-CM4. Notes du Pole de Modélisation de l’Institut Pierre Simon Laplace 26. ISSN 1288–1619

  • Maruyama T, Tsuneoka Y (1988) Anomalously short duration of the easterly wind phase of the qbo at 50 hpa in 1987 and its relationship to an el-NINO event. J Meteor Soc Japan 66:629–634

    Google Scholar 

  • Matthews AJ (2000) Propagation mechanisms for the Madden-Julian oscillation. Q J R Meteorol Soc 126:2637–2652

    Article  Google Scholar 

  • Nikulin G, Lott F (2010) On the time-scales of the downward propagation and of the tropospheric planetary wave response to the stratospheric circulation. Ann Geophys 28:339–351

    Article  Google Scholar 

  • Ricciardully L, Garcia RR (2000) The excitation of equatorial waves by deep convection in the NCAR community climate model (CCM3). J Atmos Sci 57:3461–3487

    Article  Google Scholar 

  • Sassi F, Kinnison D, Boville BA, Garcia RR, Roble R (2004) Effect of El Nino-Southern oscillation on the dynamical, thermal, and chemical structure of the middle atmosphere. J Geophys Res-Atmos 109:D17–D17108. doi:10.1029/2003JD00443

    Article  Google Scholar 

  • Salomon S, Rosenlof KH, Portmann RW, Daniel JS, Davis SM, Sanford TJ, GK (2010) Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327(5970):1219–1223

  • Straub KH, Haertel PT, Kiladis GN (2010) An analysis of convectively coupled Kelvin waves in 20 WCRP CMIP3 global coupled climate models. J Clim 23:3031–3056

    Article  Google Scholar 

  • Ropelewski CF, Jones PD (1987) An Extension of the Tahiti Darwin southern oscillation index. Mon Weather Rev 115:2161–2165

    Article  Google Scholar 

  • Taguchi M (2010) Observed connection of the stratospheric quasi-biennial oscillation with El-Nino southern oscillation in radiosonde data. J Geophys Res 115:D18120. doi:10.1029/2010JD014325

    Article  Google Scholar 

  • Weare BC (2010) Madden Julian oscillation in the tropical stratosphere. J Geophys Res 115:D17113. doi:10.1029/2009JD013748

    Article  Google Scholar 

  • Wheeler MC, Hendon HH (2004) An all-season real-time multivariate MJO-index: development of an index for monitoring and prediction. Mon Weather Rev 132:1917–1932

    Article  Google Scholar 

  • Wheeler M, Kiladis GN (1999) Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber-frequency domain. J Atmos Sci 56:375–399

    Article  Google Scholar 

  • Xavier PK, Duvel JP, Braconnot P, Doblas-Reyes FJ (2010) An evaluation metric for interannual variability and its application to CMIP3 twentieth-century simulations. J Clim 23:3497–3508

    Google Scholar 

  • Yang GY, Hoskins BJ, Slingo JM (2011) Equatorial waves in opposite QBO phases. J Atmos Sci 68:839–862

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Lott.

Additional information

This paper is a contribution to the special issue on the IPSL and CNRM global climate and Earth System Models, both developed in France and contributing to the 5th coupled model intercomparison project.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maury, P., Lott, F., Guez, L. et al. Tropical variability and stratospheric equatorial waves in the IPSLCM5 model. Clim Dyn 40, 2331–2344 (2013). https://doi.org/10.1007/s00382-011-1273-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1273-0

Keywords

Navigation