Skip to main content
Log in

A new weighting function for estimating microwave sounding unit channel 4 temperature trends simulated by CMIP5 climate models

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A new static microwave sounding unit (MSU) channel 4 weighting function is obtained from using Coupled Model Inter-comparison Project, Phase 5 (CMIP5) historical multimodel simulations as inputs into the fast Radiative Transfer Model for TOVS (RTTOV v10). For the same CMIP5 model simulations, it is demonstrated that the computed MSU channel 4 brightness temperature (T4) trends in the lower stratosphere over both the globe and the tropics using the proposed weighting function are equivalent to those calculated by RTTOV, but show more cooling than those computed using the traditional UAH (University of Alabama at Huntsville) or RSS (Remote Sensing Systems in Santa Rosa, California) static weighting functions. The new static weighting function not only reduces the computational cost, but also reveals reasons why trends using a radiative transfer model are different from those using a traditional static weighting function. This study also shows that CMIP5 model simulated T4 trends using the traditional UAH or RSS static weighting functions show less cooling than satellite observations over the globe and the tropics. Although not completely removed, this difference can be reduced using the proposed weighting function to some extent, especially over the tropics. This work aims to explore the reasons for the trend differences and to see to what extent they are related to the inaccurate weighting functions. This would also help distinguish other sources for trend errors and thus better understand the climate change in the lower stratosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker, R. A., John M. Chambers, and A. R. Wilks, 1988: The New S Language, Chapman & Hall, New York. 132pp.

    Google Scholar 

  • Christy, J. R., R. W. Spencer, W. B. Norris, and W. D. Braswell, 2003: Error estimates of version 5.0 of MSU-AMSU bulk atmospheric temperatures. J. Atmos. Oceanic Technol., 20, 613–629.

    Article  Google Scholar 

  • Christy, J. R., W. B. Norris, R. W. Spencer, and J. J. Hnilo, 2007: Tropospheric temperature change since 1979 from tropical radiosonde and satellite measurements. J. Geophys. Res., 112, D06102, doi: 10.1029/2005JD006881.

    Article  Google Scholar 

  • Douglass, D. H., B. D. Pearson, and S. F. Singer, 2004: Altitude dependence of atmospheric temperature trends: Climate models versus observations. Geophys. Res. Lett., 31, L13208, doi: 10.1029/2004/GL020103.

    Article  Google Scholar 

  • Douglass, D. H., J. R. Christy, B. D. Pearson, and S. F. Singer, 2007: A comparison of tropical temperature trends with model predictions. Int. J. Climatol., 27, doi: 10.1002/joc.1651.

  • Grody, N. C., 1983: Severe storm observations with the microwave sounding unit. J. Climate Appl. Meteor., 22, 609–625.

    Article  Google Scholar 

  • Grody N. C., K. Y. Vinnikov, M. D. Goldberg, J. T. Sullivan, and J. D. Tarpley, 2004: Calibration of multisatellite observations for climatic studies: Microwave sounding unit (MSU). J. Geophys. Res., 109, D24104, doi: 10.1029/2004JD005079.

    Article  Google Scholar 

  • IPCC, 2007: Summary for policymakers. Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon et al., Eds., Cambridge University Press, Cambridge, New York, 2–14.

    Google Scholar 

  • Jones, P. D., 1989: The influence of ENSO on global temperatures. Climate Monitor, 17, 80–90.

    Google Scholar 

  • Liou, K. N., 2002: Application of radiative transfer principles to remote sensing. An Introduction to Atmosphere Radiation, 2nd ed. K. N. Liou, Ed., Academic Press, San Diego, 414–418.

    Google Scholar 

  • Matricardi, M., 2005: The inclusion of aerosols and clouds in RTIASI, the ECMWF fast radiative transfer model for the infrared atmospheric sounding interferometer. ECMWF Tech. Memo. 474, 53pp. [Available online at http://www.ecmwf.int/publications.]

    Google Scholar 

  • Matricardi, M., 2008: The generation of RTTOV regression coefficients for IASI and AIRS using a new profile training set and a new line-by-line database. ECMWF Tech. Memo. 564, 47pp. [Available online at http://www.ecmwf.int/publications.]

    Google Scholar 

  • Matricardi, M., F. Chevallier and S. Tjemkes, 2001: An improved general fast radiative transfer model for the assimilation of radiance observations. ECMWF Research Dept. Tech. Memo., 345pp. [Available online at http://www.ecmwf.int/publications.]

    Google Scholar 

  • Mears, C. A., and F. J. Wentz, 2005: The effect of drifting measurement time on satellite-derived lower tropospheric temperature. Science, 309, 1548–1550, doi: 10.1126/science.1114772.

    Article  Google Scholar 

  • Mears, C. A., and F. J. Wentz, 2009: Construction of the remote sensing systems V3.2 atmospheric temperature records from the MSU and AMSU microwave sounders. J. Atmos. Oceanic Technol., 26, 1040–1056, doi: 10.1175/2008JTECHA1176.1.

    Article  Google Scholar 

  • Mears, C. A., M. C. Schabel, and F. J. Wentz, 2003: A reanalysis of the MSU channel 2 tropospheric temperature record. J. Climate, 16, 3650–3664.

    Article  Google Scholar 

  • Santer B. D., 1996: A search for human influences on the thermal structure of the atmosphere. Nature, 382, 39–46.

    Article  Google Scholar 

  • Santer, B. D., J. J. Hnilo, T. M. L. Wigley, J. S. Boyle, C. Doutriaux, M. Fiorino, D. E. Parker, and K. E. Taylor, 1999: Uncertainties in observationally based estimates of temperature change in the free atmosphere. J. Geophys. Res., 104, 6305–6333.

    Article  Google Scholar 

  • Santer, B. D., T. M. L. Wigley, J. S. Boyle, D. J. Gaffen, J. J. Hnilo, D. Nychka, D. E. Parker, and K. E. Taylor, 2000: Statistical significance of trends and trend differences in layer-average atmospheric temperature time series. J. Geophys. Res., 105, 7337–7356.

    Article  Google Scholar 

  • Santer, B. D., and Coauthors, 2005: Amplification of surface temperature trends and variability in the tropical atmosphere. Science, 309, 1551–1556.

    Article  Google Scholar 

  • Santer, B. D., and Coauthors, 2008: Consistency of modelled and observed temperature trends in the tropical troposphere. Inter. J. Climatol., 28, 1703–1722, doi: 10.1002/joc.1756.

    Article  Google Scholar 

  • Saunders, R., M. Matricardi, and P. Brunel, 1999: An improved fast radiative transfer model for assimilation of satellite radiance observations. Quart. J. Roy. Meteor. Soc., 125(556), 1407–1425.

    Google Scholar 

  • Seidel, D. J., and Coauthors, 2004: Uncertainty in signals of large-scale climate variations in radiosonde and satellite upper-air temperature datasets. J. Climate, 17, 2225–2240.

    Article  Google Scholar 

  • Spencer, R. W., and J. R. Christy, 1990: Precise monitoring of global temperature trends from satellites. Science, 247, 1558–1562.

    Article  Google Scholar 

  • Spencer, R. W., and J. R. Christy, 1992a: Precision and radiosonde validation of satellite gridpoint temperature anomalies. Part I: MSU channel 2. J. Climate, 5, 847–857.

    Article  Google Scholar 

  • Spencer, R. W., and J. R. Christy, 1992b: Precision and radiosonde validation of satellite gridpoint temperature anomalies. Part II: A tropospheric retrieval and trends during 1979–1990. J. Climate, 5, 858–866.

    Article  Google Scholar 

  • Spencer, R. W., and J. R. Christy, 1993: Precision lower stratospheric temperature monitoring with the MSU: technique, validation and results 1979–1991. J. Climate., 6, 1194–1204.

    Article  Google Scholar 

  • Steiner, A. K., G. Kirchengast, M. Borsche, U. Foelsche, and T. Schoengassner, 2007: A multi-year comparison of lower stratospheric temperatures from CHAMP radio occultation data with MSU/AMSU records. J. Geophys. Res., 112, D22110, doi: 10.1029/2006JD008283.

    Article  Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2009: A summary of the CMIP5 experiment design. PCDMI Rep., 33pp., [Available online at http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor_CMIP5_design.pdf.]

    Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 485–498, doi: 10.1175/BAMSD-11-00094.1.

    Google Scholar 

  • Thorne, P. W., D. E. Parker, S. F. B. Tett, P. D. Jones, M. McCarthy, H. Coleman, and P. Brohan. 2005a: Revisiting radiosonde upper air temperatures from 1958 to 2002. J. Geophys. Res., 110, D18105, doi: 10.1029/2004JD005753.

    Article  Google Scholar 

  • Thorne, P. W., D. E. Parker, J. R. Christy, and C. A. Mears, 2005b: Uncertainties in climate trends: Lessons from upper-air temperature records. Bull. Amer. Meteor. Soc., 86, 1437–1442.

    Article  Google Scholar 

  • Vinnikov, K. Y., and Grody, N. C. 2003: Global warming trend of mean tropospheric temperature observed by satellites. Science, 302, 269–272.

    Article  Google Scholar 

  • Vinnikov, K. Y., N. C. Grody, A. Robock, R. J. Stouffer, P. D. Jones, and M. D. Goldberg, 2006: Temperature trends at the surface and in the troposphere. J. Geophys. Res., 111, D03106, doi: 10.1029/2005JD006392.

    Article  Google Scholar 

  • Wigley, T. M. L., V. Ramaswamy, J. R. Christy, J. R. Lanzante, C. A. Mears, B. D. Santer, and C. K. Folland, 2006: Executive summary in temperature trends in the lower atmosphere: Steps for understanding and reconciling differences. T. R. Karl, S. J. Hassol, C. D. Miller, and W. L. Murray, Eds., A Report by the Climate Change Science Program and the Subcommittee on Global Change Research, Washington, DC, 2–13.

    Google Scholar 

  • Zheng, X., and R. E. Basher, 1999: Structural time series models and trend detection in global and regional temperature series. J. Climate, 12, 2347–2358.

    Article  Google Scholar 

  • Zou, C. Z., M. D. Goldberg, Z. Cheng, N. C. Grody, J. T. Sullivan, C. Cao, and D. Tarpley, 2006: Recalibration of microwave sounding unit for climate studies using simultaneous nadir overpasses. J. Geophys. Res., 111, D19114, doi: 10.1029/2005JD006798.

    Article  Google Scholar 

  • Zou, C. Z., M. Gao, and M. Goldberg, 2009: Error structure and atmospheric temperature trend in observations from the microwave sounding unit. J. Climate, 22, 1661–1681.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogu Zheng  (郑小谷).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Zheng, X., Yang, C. et al. A new weighting function for estimating microwave sounding unit channel 4 temperature trends simulated by CMIP5 climate models. Adv. Atmos. Sci. 30, 779–789 (2013). https://doi.org/10.1007/s00376-013-2152-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-013-2152-x

Key words

Navigation