Skip to main content
Log in

Long-term stability and oceanic mean state simulated by the coupled model FGOALS-s2

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

We describe the long-term stability and mean climatology of oceanic circulations simulated by version 2 of the Flexible Global Ocean-Atmosphere-Land System model (FGOALS-s2). Driven by pre-industrial forcing, the integration of FGOALS-s2 was found to have remained stable, with no obvious climate drift over 600 model years. The linear trends of sea SST and sea surface salinity (SSS) were −0.04°C (100 yr)−1 and 0.01 psu (100 yr)−1, respectively.

The simulations of oceanic temperatures, wind-driven circulation and thermohaline circulation in FGOALS-s2 were found to be comparable with observations, and have been substantially improved over previous FGOALS-s versions (1.0 and 1.1). However, significant SST biases (exceeding 3°C) were found around strong western boundary currents, in the East China Sea, the Sea of Japan and the Barents Sea. Along the eastern coasts in the Pacific and Atlantic Ocean, a warm bias (>3°C) was mainly due to overestimation of net surface shortwave radiation and weak oceanic upwelling. The difference of SST biases in the North Atlantic and Pacific was partly due to the errors of meridional heat transport. For SSS, biases exceeding 1.5 psu were located in the Arctic Ocean and around the Gulf Stream. In the tropics, freshwater biases dominated and were mainly caused by the excess of precipitation. Regarding the vertical dimension, the maximal biases of temperature and salinity were located north of 65°N at depths of greater than 600 m, and their values exceeded 4°C and 2 psu, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, R. F., and Coauthors, 2003: The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present). J. Hydrometeorology, 4, 1147–1167.

    Article  Google Scholar 

  • Antonov, J. I., R. A. Locarnini, T. P. Boyer, A. V. Mishonov, and H. E. Garcia, 2006: Salinity. Vol. 2, World Ocean Atlas 2005, S. Levitus, Ed., NOAA Atlas NESDIS 62, U.S. Government Printing Office, Washington, D. C., 182pp.

    Google Scholar 

  • Bacon, S. 1997: Circulation and Fluxes in the North Atlantic between Greenland and Ireland. J. Phys. Oceanogr., 27, 1420–1435.

    Article  Google Scholar 

  • Bao, Q., G. X. Wu, Y. M. Liu, J. Yang, Z. Z. Wang, and T. J. Zhou, 2010: An Introduction to the Coupled Model FGOALS1.1-s and Its Performance in East Asia, Adv. Atmos. Sci., 27(5), 1131–1142, doi: 10.1007/s00376-010-9177-1.

    Article  Google Scholar 

  • Bao, Q., and Coauthors, 2012: The Flexible Global Ocean-Atmosphere-Land System model Version: FGOALS-s2. Adv. Atmos. Sci. (in press)

  • Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov, 2001: Ocean turbulence. Part I: Onepoint closure model—Momentum and heat vertical diffusivities. J. Phys. Oceanogr., 31, 1413–1426.

    Article  Google Scholar 

  • Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov, 2002: Ocean turbulence. Part II: Vertical diffusivities of momentum, heat, salt, mass, and passive scalars. J. Phys. Oceanogr., 32, 240–264.

    Article  Google Scholar 

  • Cavalieri, D. J., and C. L. Parkinson, 2003: 30-year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability. Geophys. Res. Lett., 30(18), doi: 10.1029/2003GL018031.

  • Chen, K. M., X. H. Zhang, and X. Z Jin, 1997a: A coupled ocean-atmosphere general circulation model for studies of global climate change. I. Formulation and performance of the model. Acta Oceanologia Sinica, 19(3), 21–32. (in Chinese)

    Google Scholar 

  • Chen, K. M., X. H. Zhang, X. Z Jin, Y. Q. Yu, and Y. F. Guo, 1997b: A coupled ocean-atmosphere general circulation model for studies of global climate changes: II. Preliminary analyses on climate drift and enhanced greenhouse effect. Acta Oceanologia Sinica, 19(4), 26–40. (in Chinese)

    Google Scholar 

  • Chen, Q. Y., Y. Q. Yu, Y. F. Guo, and X. H. Zhang, 1996: Climatic change in East Asia induced by greenhouse effect. Climatic and Environmental Research, 1, 113–123. (in Chinese)

    Google Scholar 

  • Clarke, R. A., 1984: Transport through the Cape Farewell-Flemish Cap section. Rapports et Proces-Verbaux. Reun. Cons. int. Explor. Mer, 185, 120–130. (in French)

    Google Scholar 

  • Cunningham, S. A., S. G. Alderson, B. A. King, and M. A. Brandon, 2003: Transport and variability of the Antarctic Circumpolar Current in Drake Passage. J. Geophys. Res., 108, 8084, doi: 10.1029/2001JC001147.

    Article  Google Scholar 

  • Cunningham, S. A., and Coauthors, 2007: Temporal variability of the Atlantic Meridional Overturning Circulation at 26°N. Science, 317, 935–938, doi: 10.1126/science.1141304.

    Article  Google Scholar 

  • Davey, M. K., and Coauthors, 2002: STOIC: A study of coupled model climatology and variability in tropical ocean regions. Climate Dyn., 18, 403–420.

    Article  Google Scholar 

  • Ganachaud, A., and C. Wunsch, 2003: Large-scale ocean heat and freshwater transports during the World Ocean Circulation Experiment. J. Climate, 16, 696–705.

    Article  Google Scholar 

  • Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20, 150–155.

    Article  Google Scholar 

  • Grist, J. P., and S. A. Josey, 2003: Inverse analysis adjustment of the SOC air-sea flux climatology using ocean heat transport constraints. J. Climate, 20, 3274–3295, doi: http://dx.doi.org/10.1175/1520-0442(2003)016<3274:IAAOTS>2.0.CO;2.

    Article  Google Scholar 

  • Jin, X. Z., X. H. Zhang, and T. J. Zhou, 1999: Fundamental framework and experiments of the third generation of IAP/LASG world ocean general circulation model. Adv. Atmos. Sci., 16, 197–215.

    Article  Google Scholar 

  • Kuhlbrodt, T., A. Griesel, M. Montoya, A. Levermann, M. Hofmann, and S. Rahmstorf, 2007: On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys., 45, RG2001, doi: 10.1029/2004RG000166.

    Article  Google Scholar 

  • Large, W. G., and G. Danabasoglu, 2006: Attribution and impacts of upper-ocean biase in CCSM3. J. Climate, 19, 2325–2346.

    Article  Google Scholar 

  • Leaman, K. D., R. L. Molinari, and P. S. Vertes, 1987: Structure and variability of the Florida Current at 27°N: April 1982-July 1984. J. Phys. Oceanogr., 17, 565–583.

    Article  Google Scholar 

  • Lee, T. N., W. E. Johns, C. T. Liu, D. Zhand, R. Zantopp, and Y. Yang, 2001: Mean transport and seasonal cycle of the Kuroshio east of Taiwan with comparison to the Florida Current. J. Geophys. Res., 106, 22143–22158.

    Article  Google Scholar 

  • Lin, P. F., H. L. Liu, and X. H. Zhang, 2007: Sensitivity of the upper ocean temperature and circulation in the equatorial Pacific to solar radiation penetration due to phytoplankton. Adv. Atmos. Sci., 24(5), 765–780, doi: 10.1007/s00376-007-0765-7.

    Article  Google Scholar 

  • Lin, P. F., H. L. Liu, and X. H. Zhang, 2008: Effect of chlorophyll-a horizontal distribution on upper ocean temperature in the central and eastern equatorial Pacific. Adv. Atmos. Sci., 25(4), 585–596, doi: 10.1007/s00376-008-0585-4.

    Article  Google Scholar 

  • Lin, P. F., H. L. Liu, C. Li, and X. H. Zhang, 2010: Spring cold bias of SST and minimal wind mixing in the equatorial Pacific cold tongue. Atmos. Oceanic Sci. Lett., 3, 342–346.

    Google Scholar 

  • Lin, P. F., H. L. Liu, Y. Q. Yu, and X. H. Zhang, 2011: Response of Sea surface temperature to chlorophyll-a concentration in the tropical Pacific: Annual mean, seasonal cycle and interannual variability. Adv. Atmos. Sci., 28(3), 492–510, doi: 10.1007/s00376-010-0015-2.

    Article  Google Scholar 

  • Liu, H. L., X. H. Zhang, W. Li, Y. Q. Yu, and R. C. Yu, 2004a: A eddy-permitting oceanic general circulation model and its preliminary evaluations. Adv. Atmos. Sci., 21, 675–690.

    Article  Google Scholar 

  • Liu, H. L., Y. Q. Yu, W. Li, and X. H. Zhang, 2004b: Manual for LASG/IAP Climate System Ocean Model (LICOM1.0). Science Press, Beijing, 1–128. (in Chinese)

    Google Scholar 

  • Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang, 2012: The baseline evaluation of LASG/IAP Climate system Ocean Model (LICOM) version 2.0. Acta Meteorologica Sinica, 26(3), 318–329.

    Article  Google Scholar 

  • Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, and H. E. Garcia, 2006: Temperature. Vol.1, World Ocean Atlas 2005, S. Levitus, Ed., NOAA Atlas NESDIS 61, U. S. Government Printing Office, Washington D.C., 182pp.

    Google Scholar 

  • Lumpkin, R., and K. Speer, 2007: Global ocean meridional overturning. J. Phys. Oceanogr., 37, 2550–2562.

    Article  Google Scholar 

  • Mechoso, C., and Coauthors, 1995: The seasonal cycle over the tropical Pacific in coupled ocean- atmosphere general circulation models. Mon. Wea. Rev., 123, 2825–2838.

    Article  Google Scholar 

  • Meehl, G. A., and Coauthors, 2007: Global climate projections. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, New York, 996pp.

    Google Scholar 

  • Ohlmann, J., 2003: Ocean radiant heating in climate models. J. Climate, 16, 1337–1351.

    Article  Google Scholar 

  • Pacanowski, R., and S. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11, 1443–1451.

    Article  Google Scholar 

  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s Histori cal Merged Land-Ocean Surface Temperature Analysis (1880–2006). J. Climate, 21, 2283–2296.

    Article  Google Scholar 

  • Steele, M., R. Morley, and W. Ermold, 2001: PHC: A global ocean hydrography with a high quality Arctic Ocean. J. Climate, 14, 2079–2087.

    Article  Google Scholar 

  • Uppala, S., and Coauthors, 2005: The ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012.

    Article  Google Scholar 

  • Wu, F. H., H. L. Liu, W. Li, and X. H. Zhang, 2005: Effect of adjusting vertical resolution on the eastern equatorial Pacific cold tongue. Acta Oceanologica Sinica, 24(3), 1–12.

    Google Scholar 

  • Wunsch, C., 2011: The decadal mean ocean circulation and Sverdrup balance. J. Mar. Res., 69, 417–434.

    Article  Google Scholar 

  • Xiao, C., 2006: Adoption of a two-step shape-preserving advection scheme in an OGCM and its coupled experiment. M.S. thesis, Institute of Atmospheric Physics, Chinese Academy of Sciences, 89pp. (in Chinese)

  • Xie, P., J. E. Janowiak, P. A. Arkin, R. F. Adler, A. Gruber, R. R. Ferraro, G. J. Huffman, and S. Curtis, 2003: GPCP pentad precipitation analyses: An experimental dataset based on gauge observations and satellite estimates. J. Climate, 16, 2197–2214.

    Article  Google Scholar 

  • Xue, Y., T. M. Smith, and R. W. Reynolds, 2003: Interdecadal changes of 30-yr SST normals during 1871–2000. J. Climate, 16, 1601–1612.

    Article  Google Scholar 

  • Yu, L., 2007: Global variations in oceanic evaporation (1958–2005): The role of the changing wind speed. J. Climate, 20(21), 5376–5390.

    Article  Google Scholar 

  • Yu, L., X. Jin, and R. A. Weller, 2008: Multidecade global flux datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables. OAFlux Project Tech. Rep. OA-2008-01, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 64pp.

    Google Scholar 

  • Yu, Y. Q., R. C. Yu, X. H. Zhang, and H. L. Liu, 2002: A flexible global coupled climate model. Adv. Atmos. Sci., 19, 169–190.

    Article  Google Scholar 

  • Yu, Y. Q., X. H. Zhang, and Y. F. Guo, 2004: Global coupled ocean-atmosphere general circulation models in LASG/IAP. Adv. Atmos. Sci., 21, 444–455.

    Article  Google Scholar 

  • Yu, Y. Q., W. P. Zheng, X. H. Zhang, and H. L. Liu, 2007: LASG coupled climate system model FGCM-1.0. Chinese Journal of Geophysics, 50(6), 1677–1687. (in Chinese)

    Google Scholar 

  • Yu, Y. Q., W. P. Zheng, B. Wang, H. L. Liu, and J. P. Liu, 2011: Versions g1.0 and g1.1 of the LASG/IAP Flexible Global Ocean-Atmosphere-Land System Model. Adv. Atmos. Sci., 28(1), 99–117, doi: 10.1007/s00376-010-9112-5.

    Article  Google Scholar 

  • Yu, Y. Q., H. L. Liu, and P. F. Lin, 2012: A quasiglobal (1/10)° eddy-resolving ocean general circulation model and its preliminary results. Chinese Science Bulletin, 57, 3908–3916, doi: 10.1007/s11434-012-5234-8.

    Article  Google Scholar 

  • Yuan, Y., A. Kaneko, J. Su, X. Ahu, Y. Liu, N. Gohda, and H. Chen, 1998: The Kuroshio east of Taiwan and in the East China Sea and the currents east of Ryukyu Islands during early summer of 1996. Journal of Oceanography, 54, 217–226.

    Article  Google Scholar 

  • Zhang, L. X., T. J. Zhou, B. Wu, and Q. Bao, 2010: The annual modes of tropical precipitation simulated by the LASG/IAP coupled ocean-atmosphere model FGOALS_s1.1. Acta Meteorologica Sinica, 24(2), 189–202.

    Google Scholar 

  • Zhang, X. H., and X. Liang, 1989: A numerical world ocean general circulation model. Adv. Atmos. Sci., 6, 43–61.

    Google Scholar 

  • Zhang, X. H., N. Bao, R. C. Yu, and W. Q. Wang, 1992: Coupling scheme experiments based on an atmospheric and an oceanic GCM. Chinese Journal of Atmospheric Science, 16(2), 129–144. (in Chinese)

    Google Scholar 

  • Zhou, T. J., and Coauthors, 2005: The climate system model FGOALS-s using LASG/IAP spectral AGCM SAMIL as its Atmospheric component. Acta Meteorologica Sinica, 63, 702–715. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Lin  (林鹏飞).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, P., Yu, Y. & Liu, H. Long-term stability and oceanic mean state simulated by the coupled model FGOALS-s2. Adv. Atmos. Sci. 30, 175–192 (2013). https://doi.org/10.1007/s00376-012-2042-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-012-2042-7

Key words

Navigation