Skip to main content
Log in

Seasonal evolution of dominant modes in south pacific SST and relationship with ENSO

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A season-reliant empirical orthogonal function (S-EOF) analysis was applied to the seasonal mean SST anomalies (SSTAs) based on the HadISST1 dataset with linear trend removed at every grid point in the South Pacific (60.5°-19.5°S, 139.5°E-60.5°W) during the period 1979–2009. The spatiotemporal characteristics of the dominant modes and their relationships with ENSO were analyzed. The results show that there are two seasonally evolving dominant modes of SSTAs in the South Pacific with interannual and interdecadal variations; they account for nearly 40% of the total variance. Although the seasonal evolution of spatial patterns of the first S-EOF mode (S-EOF1) did not show remarkable propagation, it decays with season remarkably. The second S-EOF mode (S-EOF2) showed significant seasonal evolution and intensified with season, with distinct characteristics of eastward propagation of the negative SSTAs in southern New Zealand and positive SSTAs southeast of Australia. Both of these two modes have significant relationships with ENSO. These two modes correspond to the post-ENSO and ENSO turnabout years, respectively. The SEOF1 mode associated with the decay of the eastern Pacific (EP) and the central Pacific (CP) types of ENSO exhibited a more significant relationship with the EP/CP type of El Niño than that with the EP/CP type of La Niña. The S-EOF2 mode contacted with the EP type of El Niño changing into the EP/CP type of La Niña showed a more significant connection with the EP/CP type of La Niña.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander, M. A., I. Bladé, M. Newman, J. R. Lanzante, N.-C. Lau, and J. D. Scott, 2002: The atmospheric bridge: The influence of ENSO teloconnections on air-sea interaction over the global oceans. J. Climate, 15, 2205–2231.

    Article  Google Scholar 

  • Barnett, T. P., 1991: The interaction of multiple time scales in the tropical climate system. J. Climate, 4, 269–285.

    Article  Google Scholar 

  • Barros, V. R., and G. E. Silvestri, 2002: The relationship between sea surface temperature at the subtropical south-central Pacific and precipitation in southeastern South America. J. Climate, 15, 251–267.

    Article  Google Scholar 

  • Behera, S. K., and T. Yamagata, 2001: Subtropical SST dipole events in the southern Indian Ocean. Geophys. Res. Lett., 28(2), 327–330.

    Article  Google Scholar 

  • Falvey, M., and R. D. Garreaud, 2009: Regional cooling in a warming world: Recent temperature trends in the southeast Pacific and along the west coast of subtropical South America (1979–2006). Geophys. Res. Lett., 114, D04102, doi: 10.1029/2008JD010519.

    Google Scholar 

  • Giese, B. S., S. C. Urizar, and N. S. Fuckar, 2002: Southern hemisphere origins of 1976 climate shift. Geophys. Res. Lett., 29(10), 2215–2231.

    Google Scholar 

  • Holbrook, N. J., and N. L. Bindoff, 1999: Seasonal temperature variability in the upper southwest Pacific Ocean. J. Phys. Oceanogr., 29, 366–381.

    Article  Google Scholar 

  • Holbrook, N. J., P. S. L. Chan, and S. A. Venegas, 2005: Oscillatory and propagating modes of temperature variability at the 3–3.5 and 4–4.5 time scales in the upper southwest Pacific Ocean. J. Climate, 18, 719–736.

    Article  Google Scholar 

  • Hsu, H. H., and Y. L. Chen, 2011: Decadal to bi-decadal rainfall variation in the western Pacific: A footprint of South Pacific decadal variability? Geophys. Res. Lett., 38, L03703, doi: 10.1029/2010GL046278.

    Article  Google Scholar 

  • Jacobs, G. A., H. E. Hurlburt, J. C. Kindle, E. J. Metzger, J. L. Mitchell, W. J. Teague, and A. J. Wallcraft, 1994: Decadal-scale trans-Pacific propagation and warming effects on an El Niño anomaly. Nature, 370, 360–363, doi: 10.1126/science.281.5374.240.

    Article  Google Scholar 

  • Jia, X. L., and C. Y. Li, 2005: Dipole oscillation in the Southern Indian Ocean and its impacts on climate. Chinese J. Geophys., 48(6), 1238–1249. (in Chinese)

    Google Scholar 

  • Kao, H. Y., and J. Y. Yu, 2009: Contrasting Eastern-Pacific and Central-Pacific types of El Niño. J. Climate, 22, 615–632.

    Article  Google Scholar 

  • Kidson, J. W., and J. A. Renwick, 2002: The Southern Hemisphere evolution of ENSO during 1981–99. J. Climate, 15, 847–863.

    Article  Google Scholar 

  • Li, C., and M. Q. Mu, 2002: A further inquiry on essence of the ENSO cycle. Advance in Earth Sciences, 17(5), 631–638.

    Google Scholar 

  • Li, C. H., D. Wang, J. Liang, D. Gu, and Y. Liu, 2006: A local positive feedback of the tropical Pacific oceanatmosphere system on interdecadal timescales. Chinese Science Bulletin, 51(5), 601–606.

    Article  Google Scholar 

  • Li, G., C. Y. Li, Y. K. Tan, and T. Bai, 2011: Principal modes of the winter SST anomaly in South Pacific and their relationships with ENSO. Acta Oceanologica Sinica, 34(2), 48–56. (in Chinese)

    Google Scholar 

  • Linsley, B. K., G. M. Wellington, and D. P. Schrag, 2000: Decadal sea surface temperature variability in the subtropical South Pacific from 1726 to 1997 AD. Science, 290(5494), 1145–1148.

    Article  Google Scholar 

  • Luo, J. J., and T. Yamagata, 2001: Long-term El Niño-Southern Oscillation (ENSO)-like variation with special emphasis on the South Pacific. J. Geophys. Res., 106(C10), 22211–22227.

    Article  Google Scholar 

  • Luo, J. J., S. Masson, S. Behera, P. Delecluse, S. Gualdi, A. Navarra, and T. Yamagata, 2003: South Pacific origin of the decadal ENSO-like variation as simulated by a coupled GCM. Geophys. Res. Lett., 30(24), 2250–2259.

    Article  Google Scholar 

  • Nnamchi, H. C., and J. P. Li, 2011: Influence of the South Atlantic Ocean Dipole on west African summer precipitation. J. Climate, 24, 1184–1197.

    Article  Google Scholar 

  • Neelin, J. D., F. F. Jin, and H. H. Syu, 2000: Variations in ENSO phase locking. J. Climate, 13, 2570–2590.

    Article  Google Scholar 

  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699–706.

    Article  Google Scholar 

  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation El Niño. Mon. Wea. Rev., 110, 354–384.

    Article  Google Scholar 

  • Rasmusson, E. M., and J. M. Wallace, 1983: Meteorological aspects of the El Niño /Southern Oscillation. Science, 222(4629), 1195–1202.

    Article  Google Scholar 

  • Rayner, N. A., D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, 2003: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 108 (D14), 4407, doi: 10.1029/2002JD002670.

    Article  Google Scholar 

  • Reynolds, R.W., and T. M. Smith, 1994: Improved global sea surface temperature analyses using optimum interpolation. J. Climate, 7, 929–948.

    Article  Google Scholar 

  • Shaffer, G., O. Leth, O. Ulloa, J. Bendtsen, G. Daneri, V. Dellarossa, S. Hormazaball, and P. I. Sehlstedt, 2000: Warming and circulation change in the eastern South Pacific Ocean. Geophys. Res. Lett., 27(9), 1247–1250.

    Article  Google Scholar 

  • Shakun, J. D., and J. Shaman, 2009: Tropical origins of North and South Pacific decadal variability. Geophys. Res. Lett., 36, L19711, doi:10.1029/2009GL040313.

    Article  Google Scholar 

  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296.

    Article  Google Scholar 

  • Terray, P., 2011: Southern Hemisphere extra-tropical forcing: A new paradigm for El Niño-Southern Oscillation. Climate Dyn., 36, 2171–2199.

    Article  Google Scholar 

  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79(1), 61–78.

    Article  Google Scholar 

  • Venegas, S. A., L. A. Mysak, and D. N. Straub, 1997: Atmosphere-ocean coupled variability in the South Atlantic. J. Climate, 10, 2904–2920.

    Article  Google Scholar 

  • Venegas, S. A., L. A. Mysak, and D. N. Straub, 1998: An interdecadal climate cycle in the South Atlantic and its links to other ocean basins. J. Geophys. Res., 103C, 24723–24736.

    Article  Google Scholar 

  • Wang, B., and S. L. An, 2005: A method for detecting season-dependent modes of climate variability: SEOF analysis. Geophys. Res. Lett., 32, L15710, doi: 10.1029/2005GL022709.

    Article  Google Scholar 

  • Wang, D., and Z. Liu, 2000: The pathway of the interdecadal variability in the Pacific Ocean. Chinese Science Bulletin, 45(17), 1555–1561. (in Chinese)

    Article  Google Scholar 

  • Wang, D., J. Wang, L. Wu, and Z. Liu, 2003a: Regime shifts in the North Pacific simulated by a COADS-driven isopycnal model. Adv. Atmos. Sci., 20(5), 743–754.

    Article  Google Scholar 

  • Wang, D., J. Wang, L. Wu, and Z. Liu, 2003b: Relative importance of wind and buoyancy forcing for interdecadal regime shifts in the Pacific Ocean. Science in China (D), 46(5), 417–427.

    Article  Google Scholar 

  • Wang, X., C. Li, and W. Zhou, 2007: Interdecadal mode and its propagating characteristics of SSTA in the South Pacific. Meteor. Atmos. Phys., 98, 115–124.

    Article  Google Scholar 

  • Weare, B. C., and J. S. Nasstrom, 1982: Examples of extended empirical orthogonal function analyses. Mon. Wea. Rev., 110, 481–485.

    Article  Google Scholar 

  • Weijer, W., W. P. M. De Ruijter, A. Sterl, and S. S. Drijfhout, 2002: Response of the Atlantic overturning circulation to South Atlantic sources of buoyancy. Global and Planetary Change, 34, 293–311.

    Article  Google Scholar 

  • Yan, H. M., C. Y. Li, and W. Zhou, 2009: Influence of subtropical dipole pattern in southern Indian Ocean on ENSO event. Chinese J. Geophys., 52(10), 2436–2449. (in Chinese)

    Google Scholar 

  • Yang, X., Y., R. X. Huang, and D. Wang, 2007: Decadal change of wind stress over the Southern Ocean associated with Antarctic ozone depletion. J. Climate, 20, 3395–3410.

    Article  Google Scholar 

  • Yu, B., and G. J. Boer, 2004: The role of the western Pacific in decadal variability. Geophys. Res. Lett., 31, L02204, doi: 10.1029/2003GL018471.

    Article  Google Scholar 

  • Yu, J. Y., H. Y. Kao, T. Lee, and S. T. Kim, 2011: Subsurface ocean temperature indices for Central-Pacific and Eastern-Pacific types of El Niño and La Niña events. Theor. Appl. Climatol., 103, 337–344.

    Article  Google Scholar 

  • Zhang, Q., H. Wang, Y. Zhong, and D. Wang, 2005: An idealized study of the impact of extratropical climate change on El Niño-Southern Oscillation. Climate Dyn., 25, 869–880.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Li  (李 刚).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, G., Li, C., Tan, Y. et al. Seasonal evolution of dominant modes in south pacific SST and relationship with ENSO. Adv. Atmos. Sci. 29, 1238–1248 (2012). https://doi.org/10.1007/s00376-012-1191-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-012-1191-z

Key words

Navigation