Skip to main content
Log in

Eddy covariance tilt corrections over a coastal mountain area in South-east China: Significance for near-surface turbulence characteristics

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Turbulence characteristics of an atmospheric surface layer over a coastal mountain area were investigated under different coordinate frames. Performances of three methods of coordinate rotation: double rotation (DR), triple rotation (TR), and classic planar-fit rotation (PF) were examined in terms of correction of eddy covariance flux. Using the commonly used DR and TR methods, unreasonable rotation angles are encountered at low wind speeds and cause significant run-to-run errors of some turbulence characteristics. The PF method rotates the coordinate system to an ensemble-averaged plane, and shows large tilt error due to an inaccurate fit plane over variable terrain slopes. In this paper, we propose another coordinate rotation scheme. The observational data were separated into two groups according to wind direction. The PF method was adapted to find an ensemble-averaged streamline plane for each group of hourly runs with wind speed exceeding 1.0 m s−1. Then, the coordinate systems were rotated to their respective best-fit planes for all available hourly observations. We call this the PF10 method. The implications of tilt corrections for the turbulence characteristics are discussed with a focus on integral turbulence characteristics, the spectra of wind-velocity components, and sensible heat and momentum fluxes under various atmospheric stabilities. Our results show that the adapted application of PF provides greatly improved estimates of integral turbulence characteristics in complex terrain and maintains data quality. The comparisons of the sensible heat fluxes for four coordinate rotation methods to fluxes before correction indicate that the PF10 scheme is the best to preserve consistency between fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acevedo, O. C., and L. Mahrt, 2010: Systematic vertical variation of mesoscale fluxes in the nocturnal boundary layer. Bound.-Layer Meteor., 135, 19–30, doi: 10.1007/s10546-010-9465-4.

    Article  Google Scholar 

  • Baldocchi, D. D., and T. P. Meyers, 1988: Turbulence structure in a deciduous forest. Bound.-Layer Meteor., 43, 345–364.

    Article  Google Scholar 

  • Baldocchi, D., J. Finnigan, K. Wilson, U. K. T. Paw, and E. Falge, 2000: On measuring net ecosystem carbon exchange over tall vegetation on complex terrain. Bound.-Layer Meteor., 96, 257–291.

    Article  Google Scholar 

  • Berger, B. W., K. J. Davis, C. Yi, P. S. Bakwin, and C. L. Zhao, 2001: Long-term carbon dioxide fluxes from a very tall tower in a northern forest: Flux measurement methodology. J. Atmos. Oceanic Technol., 18, 529–542.

    Article  Google Scholar 

  • Dellwik, E., J. Mann, F. Bingöl, and K. Larsen, 2009: Mean vertical velocities and low tilt angles at a fetchlimited forest site in the context of carbon dioxide vertical advection. Biogeosciences Discussions, 6, 8167–8213.

    Article  Google Scholar 

  • Dyer, A. J., 1981: Flow distortion by supporting structure. Bound.-Layer Meteor., 20, 243–251.

    Article  Google Scholar 

  • Feigenwinter, C., and Coauthors, 2008: Comparison of horizontal and vertical advective CO2 fluxes at three forest sites. Agricultural and Forest Meteorology, 148, 12–24.

    Article  Google Scholar 

  • Finnigan, J. J., 2004: A re-evaluation of long-term flux measurement techniques. Part II: Coordinate systems. Bound.-Layer Meteor., 113, 1–41.

    Article  Google Scholar 

  • Finnigan, J. J., R. Clement, Y. Malhi, R. Leuning, and H. A. Cleugh, 2003: A re-evaluation of long-term flux measurement techniques. Part I: Averaging and coordinate rotation. Bound.-Layer Meteor., 107, 1–48.

    Article  Google Scholar 

  • Foken, T., and B. Wichura, 1996: Tools for the quality assessment of surface-based flux easurements. Agricultural and Forest Meteorology, 78, 83–105.

    Article  Google Scholar 

  • Foken, T., M. Göckede, M. Mauder, L. Mahrt, B. Amiro, and W. Munger, 2004: Post-field data quality control. Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis, Lee et al., Eds., Kluwer, Dordrecht, 181–208.

    Google Scholar 

  • Gash, J. H., and A. D. Culf, 1996: Applying a linear detrend to eddy correlation data in real time. Bound.-Layer Meteor., 73, 301–306.

    Article  Google Scholar 

  • Göckede, M., C. Rebmann, and T. Foken, 2004: A combination of quality assessment tools for eddy covariance measurements with footprint modeling for the characterisation of complex sites. Agricultural and Forest Meteorology, 127, 175–188.

    Article  Google Scholar 

  • Hammerle, A., A. Haslwanter, M. Schmitt, M. Bahn, U. Tappeiner, A. Cernusca, and G. Wohlfahet, 2007: Eddy covariance measurements of carbon dioxide, latent and sensible energy fluxes above a meadow on a mountain slope. Bound.-Layer Meteor., 122, 397–416.

    Article  Google Scholar 

  • Kaimal, J. C., and D. A. Haugen, 1969: Some errors in the measurement of Reynolds stress. J. Appl. Meteor., 8, 460–462.

    Article  Google Scholar 

  • Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, New York, 289pp.

    Google Scholar 

  • Kaimal, J. C., J. C. Wyngaard, Y. Izumi, and O. R. Cote, 1972: Spectral characteristics of surface layer turbulence. Quart. J. Roy. Meteor. Soc., 98, 563–589.

    Article  Google Scholar 

  • Kaimal, J. C., R. A. Eversole, D. H. Lenschow, B. B. Stankov, P. H. Kahn, and J. A. Businger, 1982: Spectral characteristics of the convective boundary-layer over uneven terrain. J. Atmos. Sci., 39, 1098–1114.

    Google Scholar 

  • Kutsch, W., O. Kolle, C. Rebmann, A. Knohl, W. Ziegler, and E.-D. Schulze, 2008: Advection and resulting CO2exchange uncertainty in a tall forest in central Germany. Ecological Applications, 18, 1391–1405.

    Article  Google Scholar 

  • Lee, X., 1998: On micrometeorological observations of surface-air exchange over tall vegetation. Agricultural and Forest Meteorology, 91, 39–49.

    Article  Google Scholar 

  • Lee, X., and X. Hu, 2002: Forest-air fluxes of carbon, water and energy over non-flat terrain. Bound.-Layer Meteor., 103, 277–301.

    Article  Google Scholar 

  • Lee, X., J. Finnigan, and U. K. T. Paw, 2004: Coordinate systems and flux bias error. Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis, Lee et al., Eds., Kluwer, Dordrecht, 33–66.

    Google Scholar 

  • Leuning, R., E. van Gorsel, W. J. Massman, and P. R. Isaac, 2012: Reflections on the surface energy imbalance problem. Agricultural and Forest Meteorology, 156, 65–74.

    Article  Google Scholar 

  • Massman, W. J., and X. Lee, 2002: Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agricultural and Forest Meteorology, 113, 121–144.

    Article  Google Scholar 

  • McMillen, R. T., 1988: An eddy correlation technique with extended applicability to non-simple terrain. Bound.-Layer Meteor., 43, 231–245.

    Article  Google Scholar 

  • Paw, U. K. T., D. D. Baldocchi, T. P. Meyers, and K. B. Wilson, 2000: Correction of eddy-covariance measurements incorporating both advective effects and density fluxes. Bound.-Layer Meteor., 97, 487–511.

    Article  Google Scholar 

  • Schmid, H. P., H.-B. Su, C. S. Vogel, and P. S. Curtis, 2003: Ecosystem-atmosphere exchange of carbon dioxide over a mixed hardwood forest in northern lower Michigan. J. Geophys. Res., 108(D14), 4417–4435, doi: 10.1029/2002JD003011.

    Article  Google Scholar 

  • Spank, U., and C. Bernhofer, 2008: Another simple method of spectral correction to obtain robust eddycovariance results. Bound.-Layer Meteor., 128, 403–422.

    Article  Google Scholar 

  • Su, H.-B., H. P. Schmid, C. S. B. Grimmond, C. S. Vogel, and P. S. Curtis, 2008: An assessment of observed vertical flux divergence in long-term eddycovariance measurements over two Midwestern forest ecosystems. Agricultural and Forest Meteorology, 148, 186–205.

    Article  Google Scholar 

  • Sun, J., 2007: Tilt corrections over complex terrain and their implication for CO2 transport. Bound.-Layer Meteor., 124, 143–159.

    Article  Google Scholar 

  • Tanner, C. B., and G. W. Thurtell, 1969: Anemoclinometer measurements of Reynolds stress and heat transport in the atmospheric surface layer. ECOM 66-G22-F, University of Wisconsin, Madison, Wisconsin, 61–72.

    Google Scholar 

  • Turnipseed, A. A., D. E. Anderson, P. D. Blanken, W. M. Baugh, and R. K. Monson, 2003: Airflows and turbulent flux measurements in mountainous terrain. Part I. Canopy and local effects. Agricultural and Forest Meteorology, 119, 1–21.

    Article  Google Scholar 

  • Vickers, D., and L. Mahrt, 1997: Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Oceanic Technol. 14, 512–526.

    Article  Google Scholar 

  • van Dijk, A., A. F. Moene, and H. A. R. De Bruin, 2004: The principles of surface flux physics: Theory, practice and description of the ECPACK library. Internal Report 2004/1, Meteorology and Air Quality Group, Wageningen University, Wageningen, the Netherlands, 99pp.

    Google Scholar 

  • Wyngaard, J. C., and O. R. Cote, 1971: The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J. Atmos. Sci., 28, 190–201.

    Article  Google Scholar 

  • Wilczak, J. M., S. P. Oncley, and S. A. Sage, 2001: Sonic anemometer tilt correction algorithms. Bound.-Layer Meteor., 99, 127–150.

    Article  Google Scholar 

  • Yi, C., D. Anderson, A. Turnipseed, S. Burns, J. Sparks, D. Stannard, and R. Monsoon, 2008: The contribution of advective fluxes to net ecosystem exchange in a high-elevation, subalpine forest. Ecological Applications, 18, 1379–1390.

    Article  Google Scholar 

  • Yuan, R., M. Kang, S. B. Park, J. Hong, D. Lee, and J. Kim, 2011: Expansion of the planar-fit method to estimate flux over complex terrain. Meteor0. Atmos. Phys., 110, 123–133, doi: 10.1007/s00703-010-0113-9.

    Article  Google Scholar 

  • Zhang, H., J. Chen, and S. Park, 2001: Turbulence structure in unstable conditions over various surfaces. Bound.-Layer Meteor., 100, 243–261.

    Article  Google Scholar 

  • Zhang, Y., Z. Tan, Q. Song, G. Yu, and X. Sun, 2010: Respiration controls the unexpected seasonal pattern of carbon flux in an Asian tropical rain forest. Atmos. Environ., 44, 3886–3893

    Article  Google Scholar 

  • Zuo, J. Q., J. P. Huang, J. M. Wang, W. Zhang, J. R. Bi, G. Y. Wang, W. J. Li, and P. J. Fu, 2009: Surface turbulent flux measurements over the Loess Plateau for a semi-arid climate change study. Adv. Atmos. Sci., 26(4), 679–691, doi: 10.1007/s00376-009-8188-2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tijian Wang  (王体健).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Wang, T., Sun, Z. et al. Eddy covariance tilt corrections over a coastal mountain area in South-east China: Significance for near-surface turbulence characteristics. Adv. Atmos. Sci. 29, 1264–1278 (2012). https://doi.org/10.1007/s00376-012-1052-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-012-1052-9

Key words

Navigation