Skip to main content
Log in

The Involvement of Cyclic ADPR in Photoperiodic Flower Induction of Pharbitis nil

  • Published:
Journal of Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Cyclic adenosine diphosphate ribose (cADPR) is a potent endogenous calcium-mobilizing agent synthesized from NAD+ by ADP-ribosyl cyclases described for several animal cells. Pharmacological studies suggest that cADPR is an endogenous modulator of Ca2+-induced Ca2+ release channels. There is also information about the sub-micromolar concentration of cADPR in plant cells. Whether cADPR can act as a Ca2+-mobilizing intracellular messenger in plant tissue is an unresolved question. Despite the obvious importance of monitoring cADPR cellular levels under various physiological conditions in plants, its measurement has been technically difficult and requires specialized reagents. In the present study a widely applicable sensitivity assay for cADPR is described. We show that Pharbitis nil tissue from cotyledons contains a certain cADPR level. To explain the possible roles of this second messenger in photoperiodic flower induction, some physiological experiments were also performed. The exogenous applications of cADPR to Pharbitis nil plants, which were exposed to a 12-h-long subinductive night, significantly increased flowering response. Nevertheless 8-Br-cADPR inhibited flowering when these compounds were applied during a 16-h-long inductive night. The effect of ruthenium red, a calcium channel blocker and ryanodine, a calcium channel stimulator, on the photoperiodic induction of flowering was also studied. Ruthenium red, when applied before and during an inductive 16-h dark period, slightly inhibited flowering, whereas ryanodine, when applied before and during a 12-h long subinductive night, stimulated flower bud formation. We also confirmed evidence that Ca2+ ions are involved in the photoperiodic induction of flowering. Thus, the obtained results may suggest the involvement of cyclic ADPR-activated Ca2+ mobilization in the photoperiodic flower induction process in Pharbitis nil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  • Allen GJ, Muir RS, Sanders D. 1995. Release of Ca2+ from individual plant vacuoles by both InsP3 and cyclic ADP-ribose in plants. Science 268:735–737

    PubMed  CAS  Google Scholar 

  • Allen GJ, Sanders D. 1994a. Two voltage-gated calcium release channels co-reside in the vacuolar membrane of broad bean guard cells. Plant Cell 6:687

    Article  CAS  Google Scholar 

  • Allen GJ, Sanders D. 1994b. Osmotic stress enhances the competence of Beta vulgaris vacuoles to respond to inositol 1,4,5-triphosphate. Plant J 6:687–695

    Article  CAS  Google Scholar 

  • Bauer CS, Plieth C, Bethmann B, Popescu O, Hansen UP, et al. 1998. Strontium-induced repetitive calcium spikes in a unicellular green alga. Plant Physiol 117:545–557

    Article  PubMed  CAS  Google Scholar 

  • Carter CE, Szmidt-Jaworska A, Hughes M, Thomas B, Jackson S. 2000. Phytochrome regulation of phytochrome A mRNA levels in the short-day-plant Pharbitis nil. J Exp Bot 51:703–711

    Article  PubMed  CAS  Google Scholar 

  • Clapper DL, Walseth TF, Dargie PJ, Lee HC. 1987. Pyridine-nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J Biol Chem 262:9561–9568

    PubMed  CAS  Google Scholar 

  • Cymerski M, Kopcewicz J. 1994. Labile phytochrome and photoperiodic flower induction in Pharbitis nil Chois, the irreversible phytochrome hypothesis. Acta Soc Bot Pol 63:275–279

    Google Scholar 

  • Cymerski M, Kopcewicz J. 1995. KCN blocks the inhibiting effect of red light night-break on the flowering of Pharbitis nil. J Plant Physiol 145:189–190

    CAS  Google Scholar 

  • da Silva CP, Potter BV, Mayr GW, Guse AH. 1998. Quantification of intracellular levels of cyclic ADP-ribose by high-performance liquid chromatography. J Chromatogr B 707:43–50

    CAS  Google Scholar 

  • Dargie PJ, Agre MC, Lee HC. 1990. Comparison of Ca2+ mobilizing activities of cyclic ADP-ribose and inositol triphosphate. Cell Regul 1:279–290

    PubMed  CAS  Google Scholar 

  • Doshi A, Sopory AS. 1992. Regulation of protein phosphorylation in Sorgum bicolor. Photochem Photobiol 55:465–468

    CAS  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF. 1998. Defence gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA 95:10328–10333

    Article  PubMed  CAS  Google Scholar 

  • Friedman H, Goldschmidt EE, Halevy AH. 1989. Involvement of calcium in the photoperiodic flower induction process of Pharbitis nil. Plant Physiol 89:530–534

    Article  PubMed  CAS  Google Scholar 

  • Galione A, Sethi J. 1996. Biochemistry of Smooth Muscle Contraction. Barany M (ed.) New York, USA, Academic Press, pp 295–305

  • Galione A, White A, Willmott N, Turner M, Potter BVL, Watson SP. 1993. cGMP mobilizes intracellular Ca2+ in sea urchin eggs by stimulating cyclic ADP-ribose synthesis. Nature 365:456–459

    Article  PubMed  CAS  Google Scholar 

  • Galione A, Lee HC, Busa WB. 1991. Ca2+-induced Ca2+ release in urchin egg homogenates and its modulation by cyclic ADP-ribose. Science 253:1143–1146

    Article  PubMed  CAS  Google Scholar 

  • Graeff RM, Franco L, De Flora A, Lee HC. 1998. Cyclic GMP-dependent and -independent effects on the synthesis of the calcium messengers cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate. J Biol Chem 273:118–125

    Article  PubMed  CAS  Google Scholar 

  • Jaworski K, Szmidt-Jaworska A, Tretyn A, Kopcewicz J. 2003. Purification and characterization of calcium-dependent protein kinase from Pharbitis nil seedlings. Phytochemistry 67:1047–1055

    Article  CAS  Google Scholar 

  • Kuemmerle JF, Makhlouf GM. 1995. Agonist-stimulated cyclic ADP-ribose. Endogenous modulator of Ca2+-induced Ca2+ release in intestinal longitudinal muscle. J Biol Chem 270:25488–25494

    Article  PubMed  CAS  Google Scholar 

  • Leckie CP, McAinsh MR, Allen GJ, Sanders D, Hetherington AM. 1998. Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. Proc Natl Acad Sci USA 95:5837–15842

    Article  Google Scholar 

  • Lee HC, Aarhus R, Graeff R, Gurnack ME, Walseth TF. 1994. Cyclic ADP ribose activation of the ryanodine receptor is mediated by calmodulin. Nature 370:307–309

    Article  PubMed  CAS  Google Scholar 

  • Lee HC, Aarhus R. 1993. Wide distribution of an enzyme that catalyzes the hydrolysis of cyclic ADP-ribose. Biochem Biophys Acta 1164:68–74

    PubMed  CAS  Google Scholar 

  • Masuda W, Takenaka S, Tsuyama S, Tokunaga M, Inui H, et al. 1997. Oscillation of ADP-ribosyl cyclase activity during the cell cycle and function of cyclic ADP-ribose in a unicellular organism, Euglena gracilis. FEBS Lett 405:104–106

    Article  PubMed  CAS  Google Scholar 

  • Millar AJ, McGrath RB, Chua NH. 1994. Phytochrome phototransduction pathways. Annu Rev Genet 28:325–349

    Article  PubMed  CAS  Google Scholar 

  • Muir SR, Sanders D. 1996. Pharmacology of Ca2+ release from red beet microsomes suggests the presence of ryanodine receptor homologs in higher plants. FEBS Lett 395:39–42

    Article  PubMed  CAS  Google Scholar 

  • Muschietti IP, Martinetto HE, Coso OA, Farber MD, Tores HN, et al. 1993. G-protein from Medicago sativa: functional association to photoreceptors. Biochem J 291:383–388

    PubMed  CAS  Google Scholar 

  • Navazio L, Mariani P, Sanders D. 2001. Mobilization of Ca2+ by cyclic ADP-ribose from the endoplasmic reticulum of cauliflower florets. Plant Physiol 125:2129–2138

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus G, Bowler C, Kern R. 1993. Calcium/calmodulin-dependent and -independent phytochrome signal transduction pathways. Cell 73:937–952

    Article  PubMed  CAS  Google Scholar 

  • Roux SJ. 1994. Signal transduction in phytochrome responses. In Photomorphogenesis in Plants, Kendrick RE, Kronenberg GHM (eds.) Dordrecht, the Netherlands, Kluwer Academic Publishers, pp 187–209

    Google Scholar 

  • Sanchez JP, Duque P, Chua NH. 2004. ABA activates ADPR cyclase and cADPR induces of ABA-responsive genes in Arabidopsis. Plant J 38:381–395

    Article  PubMed  CAS  Google Scholar 

  • Shacklock PS, Read ND, Trewavas AJ. 1992. Cytosolic free calcium mediates red light-induced photomorphogenesis. Nature 358:753–755

    Article  CAS  Google Scholar 

  • Szmidt-Jaworska A, Jaworski K, Tretyn A, Kopcewicz J. 2004. The involvement of cyclic GMP in the photoperiodic flower induction of Pharbitis nil. J Plant Physiol 161:277–284

    Article  PubMed  CAS  Google Scholar 

  • Takahashi K, Kukimoto I, Tokita K, Inageand K, Inoue S, et al. 1995. Accumulation of cyclic ADP-ribose measured by a specific radioimmunoassay in differentiated human leukemic HL-60 cells with all-trans-retinoic acid. FEBS Lett 371:204–208

    Article  PubMed  CAS  Google Scholar 

  • Takeno K. 1993. Evidence of the involvement of calcium ions in the photoperiodic induction of flowering in Pharbitis nil. Plant Cell Physiol 34:221–225

    CAS  Google Scholar 

  • Tretyn A, Czaplewska J, Cymerski M, Kopcewicz J, Kednrick R. 1994. The mechanism of calcium action on flower induction in P. nil. Physiol Plant 80:388–392

    Article  Google Scholar 

  • Tretyn A, Cymerski M, Czaplewska J, Łukasiewicz H, Pawlak A, et al. 1990. Calcium and photoperiodic flower induction in Pharbitis nil. Physiol Plant 80:388–392

    Article  CAS  Google Scholar 

  • Vience-Prue D, Griessel J. 1984. Pharbitis nil Chois. In Halevy AH (ed.) Handbook of Flowering. Boca Raton, FL, USA, CRC Press, Inc., pp 47–81

    Google Scholar 

  • Vince-Prue D. 1994. Photomorphogenesis in plants. In Kendrick RE, Kronenberg GHM (eds.) Photomorphogenesis in Plants, Dordrecht, the Netherlands, Kluwer Academic Publishers

  • Walseth TF, Aarhus R, Zelazikar JR, Lee HC. 1991. Determination of endogenous levels of cyclic ADP-ribose in rat tissues. Biochim Biophys Acta 1094:113–120

    Article  PubMed  CAS  Google Scholar 

  • Walseth TF, Lee HC. 1993. Synthesis and characterization of antagonists of cyclic-ADP-ribose-induced Ca2+-release. Biochim Biophys Acta 1178:235–242

    Article  PubMed  CAS  Google Scholar 

  • Ward J, Pei ZM, Schroeder JI. 1995. Roles of ion channels in initiation of signal transduction in higher plants. Plant Cell 7:833–844

    Article  PubMed  CAS  Google Scholar 

  • White AM, Watson SP, Galione A. 1993. Cyclic ADP-ribose-induced Ca2+ release from rat brain microsomes. FEBS Lett 318:259–263

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Kuzma J, Marechal E, Graeff R, Lee H, Foster R, et al. 1997. Abscisic acid signaling through cyclic ADP-ribose in plants. Science 278:2126–2130

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Sanchez JP, Lopez-Molina L, Himmelbach A, Grill E, Chua NH. 2003. The abi-1 mutation blocks ABA signaling downstream of cADPR action. Plant J 34:307–315

    Article  PubMed  CAS  Google Scholar 

  • Zimanyi I, Pessah IN. 1994. Molecular and cellular physiology. In Handbook of Membrane Channels. London, England, Academic Press

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Szmidt-Jaworska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szmidt-Jaworska, A., Jaworski, K. & Kopcewicz, J. The Involvement of Cyclic ADPR in Photoperiodic Flower Induction of Pharbitis nil . J Plant Growth Regul 25, 233–244 (2006). https://doi.org/10.1007/s00344-006-0015-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00344-006-0015-8

Keywords

Navigation