Skip to main content
Log in

Cryptosporidium parvum Cpn60 targets a relict organelle

  • Research Article
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Chaperonin 60 (Cpn60) is a well-established marker protein for eukaryotic mitochondria and plastids. In order to determine whether the small double-membrane-bounded organelle posterior to the nucleus in the apicomplexan Cryptosporidium parvum is a mitochondrion, the Cpn60 gene of C. parvum sporozoites (CpCpn60) was analyzed and antibodies were generated for localization of the peptide. Sequence and phylogenetic analyses indicated that CpCpn60 is a mitochondrial isotype and that antibodies against it localize to the rough endoplasmic reticulum-enveloped remnant organelle of C. parvum sporozoites. These data show this organelle is of mitochondrial origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A–C.
Fig. 3.
Fig. 4A–H.
Fig. 5A, B.
Fig. 6.

Similar content being viewed by others

References

  • Adachi J, Hasegawa M (1996) Model of amino acid substitution in proteins encoded by mitochondrial DNA. J Mol Evol 42:459–468

    CAS  PubMed  Google Scholar 

  • Aji T, Flanigan T, Marshall R, Kaetzel C, Aikawa M (1991) Ultrastructural study of asexual development of Cryptosporidium parvum in a human intestinal cell line. J Protozool 38:82S

    CAS  PubMed  Google Scholar 

  • Archibald JM, Logsdon JM Jr, Doolittle WF (2000) Origin and evolution of eukaryotic chaperonins: phylogenetic evidence for ancient duplications in CCT genes. Mol Biol Evol 17:1456–1466

    CAS  PubMed  Google Scholar 

  • Archibald JM, O′Kelly CJ, Doolittle WF (2002) The chaperonin genes of jakobid and jakobid-like flagellates: implications for eukaryotic evolution. Mol Biol Evol 2002:422–431

    Google Scholar 

  • Barta JR (1989) Phylogenetic analysis of the class Sporozoea (phylum Apicomplexa Levine, 1970): evidence for the independent evolution of heteroxenous life cycles. J Parasitol 75:195–206

    CAS  PubMed  Google Scholar 

  • Braig K, et al (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371:578–586

    CAS  PubMed  Google Scholar 

  • Brocchieri L, Karlin S (2000) Conservation among HSP60 sequences in relation to structure, function, and evolution. Protein Sci 9:476–486

    CAS  PubMed  Google Scholar 

  • Bui ET, Bradley PJ, Johnson PJ (1996) A common evolutionary origin for mitochondria and hydrogenosomes. Proc Natl Acad Sci USA 18:9651–9616

    Article  Google Scholar 

  • Carreno RA, Martin DS, Barta JR (1999) Cryptosporidium is more closely related to the gregarines than to coccidia as shown by phylogenetic analysis of apiocomplexan parasites inferred using small-subunit ribosomal RNA gene sequences. Parasitol Res 85:899–904

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (1983) A 6 kingdom classification and a unified phylogeny. In: Schwemmler W, Schenk HEA (eds) Endocytobiology II. De Gruyter, Berlin, pp 1027–1034

  • Clark CG, Roger AJ (1995) Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. Proc Natl Acad Sci USA 92:6518–6521

    CAS  PubMed  Google Scholar 

  • Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786

    CAS  PubMed  Google Scholar 

  • Crawford MJ, Fraunholz MJ, Roos DS (2003) Energy metabolism in the Apicomplexa. In: Marr JJ, Nilsen TW, Komuniecki RW (eds) Molecular medical parasitology. Academic Press, New York, pp 154–169

  • Crowley KS, Payne RM (1998) Ribosome binding to mitochondria is regulated by GTP and the transit peptide. J Biol Chem 273:17278–17285

    CAS  PubMed  Google Scholar 

  • Das A, Syin C, Fujioka H, Zheng H, Goldman N, Aikawa M, Kumar N (1997) Molecular characterization and ultrastructural localization of Plasmodium falciparum Hsp60. Mol Biochem Parasitol 88:95–104

    CAS  PubMed  Google Scholar 

  • Ellis TJ, Morrison DA, Jeffries AC (1998) The phylum Apicomplexa: an update on the molecular phylogeny. In: Coombs GH, Vickerman K, Sleigh MA, Warren A (eds) Evolutionary relationships among Protozoa. Kluwer, Boston, pp 255–274

  • Entrala E, Mascaro C (1997) Glycolytic enzyme activities in Cryptosporidium parvum oocysts. FEMS Microbiol Lett 151:51–57

    CAS  PubMed  Google Scholar 

  • Fayer R (1997) Cryptosporidium and cryptosporidiosis. CRC Press, Boca Raton, Fla.

  • Feagin JE (2000) Mitochondrial genome diversity in parasites. Intl J Parasitol 30:371–390

    CAS  Google Scholar 

  • Fenton WA, Kashi Y, Furtak K, Horwich AL (1994) Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371:614–619

    CAS  PubMed  Google Scholar 

  • Fry M, Beesley JE (1991) Mitochondria of mammalian Plasmodium spp. Parasitology 102:17–26

    PubMed  Google Scholar 

  • Gupta RS (1995) Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol Microbiol 15:1–11

    CAS  PubMed  Google Scholar 

  • Hashimoto T, Sanchez LB, Shirakura T, Muller M, Hasegawa M (1998) Secondary absence of mitochondria in Giardia lamblia and Trichomonas vaginalis revealed by valyl-tRNA synthetase phylogeny. Proc Natl Acad Sci USA 95:6860–6865

    CAS  PubMed  Google Scholar 

  • Hemmingsen SM, Woolford C, Vies SM van der, Tilly K, Dennis DT, Georgopoulos CP, Hendrix RW, Ellis RJ (1988) Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature 333:330–334

    Google Scholar 

  • Horner DS, Embley TM (2001) Chaperonin 60 phylogeny provides further evidence for secondary loss of mitochondria among putative early-branching eukaryotes. Mol Biol Evol 18:1970–1975

    CAS  PubMed  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    CAS  PubMed  Google Scholar 

  • Karlin S, Brocchieri L (2000) Heat shock protein 60 sequence comparisons: duplications, lateral transfer, and mitochondrial evolution. Proc Natl Acad Sci USA 97:11348–11353

    CAS  PubMed  Google Scholar 

  • Katinka MD, Duprat S, Cornillot E, Metenier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivares CP (2001) Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414:450–453

    Article  CAS  PubMed  Google Scholar 

  • Keithly JS, Zhu G, Upton SJ, Woods KM, Martinez MP, Yarlett N (1997) Polyamine biosynthesis in Cryptosporidium parvum and its implications for chemotherapy. Mol Biochem Parasitol 88:35–42

    CAS  PubMed  Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol 29:170–179

    CAS  PubMed  Google Scholar 

  • Krungkrai SR, Learngaramkul P, Kudan S, Prapunwattana P, Krungkrai JP (1999) Mitochondrial heterogeneity in human malarial parasite Plasmodium falciparum. Sci Asia 25:77–83

    Google Scholar 

  • Krungkrai J, Prapunwattana P, Krungkrai SR (2000) Ultrastructure and function of mitochondria in gametocytic stage of Plasmodium falciparum. Parasite 7:19–26

    CAS  PubMed  Google Scholar 

  • Lill R, Kispal G (2000) Maturation of cellular Fe-S proteins: an essential function of mitochondria. Trends Biochem Sci 25:352–356

    CAS  PubMed  Google Scholar 

  • Mai Z, Ghosh S, Frisardi M, Rosenthal B, Rogers R, Samuelson J (1999) Hsp60 is targeted to a cryptic mitochondrion-derived organelle (″crypton″) in the microaerophilic protozoan parasite Entamoeba histolytica. Mol Cell Biol 19:2198–2205

    CAS  PubMed  Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

  • Mannella CA, Pfeiffer DR, Bradshaw PC, Moraru II, Slepchenko B, Loew LM, Hsieh C, Buttle K, Marko M (2001) Topology of the mitochondrial inner membrane: dynamics and bioenergetic implications. Critical review. IUMBM Life 52:93–100

    CAS  Google Scholar 

  • Martin W, Hoffmeister M, Rotte C, Henze K (2001) An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem 382:1521–1539

    CAS  PubMed  Google Scholar 

  • McFadden GI (2003) Plastids, mitochondria, and hydrogenosomes. In: Marr JJ, Nielsen TW, Komuniecki, RW (eds) Molecular medical parasitology. Academic Press, New York, pp 277–294

  • McLennan NF, Girshovich AS, Lissin NM, Charters Y, Masters M (1993) The strongly conserved carboxyl-terminus glycine-methionine motif of the Escherichia coli GroEL chaperonin is dispensable. Mol Microbiol 7:49–58

    CAS  PubMed  Google Scholar 

  • Philippe H (1993) MUST, a computer package of management utilities for sequences and trees. Nucleic Acids Res 21:5264–5272

    CAS  PubMed  Google Scholar 

  • Philippe H, Laurent J (1998) How good are deep phylogenetic trees? Curr Opin Genet Dev 8:616–623

    CAS  PubMed  Google Scholar 

  • Riordan CE, Langreth SG, Sanchez LB, Kayser O, Keithly JS (1999) Preliminary evidence for a mitochondrion in Cryptosporidium parvum: phylogenetic and therapeutic implications. J Eukaryot Microbiol 46:S52–S55

    Google Scholar 

  • Roger AJ, Svard SG, Tovar J, Clark CG, Smith MW, Gillin FD, Sogin ML (1998) A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proc Natl Acad Sci USA 95:229–234

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sanchez LB, Muller M (1998) Cloning and heterologous expression of Entamoeba histolytica adenylate kinase and uridylate/cytidylate kinase Gene 290:219–228

    Google Scholar 

  • Sanchez GI, Carucci DJ, Sacci J, Resau JH, Rogers WO, Kumar N, Hoffman SL (1999) Plasmodium yoelii: cloning and characterization of the gene encoding for the mitochondrial heat shock protein 60. Exp Parasitol 93:181–190

    CAS  PubMed  Google Scholar 

  • Sogin ML (1991) Early evolution and the origin of eukaryotes. Curr Opin Genet Dev 1:457–463

    CAS  PubMed  Google Scholar 

  • Syin C, Goldman ND (1996) Cloning of a Plasmodium falciparum gene related to the human 60-kDa heat shock protein. Mol Biochem Parasitol 79:13–19

    CAS  PubMed  Google Scholar 

  • Tachezy J, Sanchez LB, Muller M (2001) Mitochondrial type iron-sulfur cluster assembly in the amitochondriate eukaryotes Trichomonas vaginalis and Giardia intestinalis, as indicated by the phylogeny of IscS. Mol Biol Evol 18:1919–1928

    CAS  PubMed  Google Scholar 

  • Takeda T, Yoshihama I, Numata O (2001) Identification of Tetrahymena hsp60 as a 14-nm filament protein/citrate synthase-binding protein and its possible involvement in the oral apparatus formation. Genes Cells 6:139–149

    CAS  PubMed  Google Scholar 

  • Taylor AB, Smith BS, Kitada S, Kojima K, Miyaura H, Otwinowski Z, Ito A, Deisenhofer J (2001) Crystal structures of mitochondrial processing peptidase reveal the mode for specific cleavage of import signal sequences. Structure 9:615–625

    CAS  PubMed  Google Scholar 

  • Tetley L, Brown SMA, McDonald V, Coombs GH (1998) Ultrastructural analysis of the sporozoite of Cryptosporidium parvum. Microbiology 144:3249–3255

    CAS  PubMed  Google Scholar 

  • Toursel C, Dzierszinski F, Bernigaud A, Mortuaire M, Tomavo S (2000) Molecular cloning, organellar targeting and developmental expression of mitochondrial chaperone HSP60 in Toxoplasma gondii. Mol Biochem Parasitol 111:319–332

    CAS  PubMed  Google Scholar 

  • Tovar J, Fischer A, Clark CG (1999) The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol 32:1013–1021

    CAS  PubMed  Google Scholar 

  • Van der Giezen M, Birdsey GM, Horner DS, Lucocq J, Dyal P, Benchimol M, Danpure CJ, Embley TM (2003) Fungal hydrogenosomes contain mitochondrial heat-shock proteins. Mol Biol Evol 20:1051–1061

    PubMed  Google Scholar 

  • Westermann B, Neupert W (2000) Mitochondria-targeted green fluorescent proteins: convenient tools for the study of organelle biogenesis in Saccharomyces cerevisiae. Yeast 16:1421–1427

    CAS  PubMed  Google Scholar 

  • Williams B-AP, Hirt RP, Lucocq JM, Embley TM (2002) A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418:865–869

    CAS  PubMed  Google Scholar 

  • Zhu G, Keithly JS, Philippe H (2000a) What is the phylogenetic position of Cryptosporidium? Intl J Syst Evol Microbiol 50:1673–1681

    CAS  Google Scholar 

  • Zhu G, Marchewka MJ, Woods KM, Upton SJ, Keithly JS (2000b) Molecular analysis of a Type I fatty acid synthase in Cryptosporidiium parvum. Mol Biochem Parasitol 105:253–260

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by funds from National Institutes of Health grant AI40320 to J.S.K. and USUHS grants R073AM and R073IF to S.G.L. These data were submitted to the State University of New York-Albany in partial fulfillment for a PhD degree in Biomedical Sciences (C.E.R.) and have been presented in part at national and international meetings. At the Wadsworth Center, we thank the Electron Microscopy, Photo/Illustration, Molecular Genetics, and Peptide Synthesis Core Facilities, Fogarty Fellow Dr. J.R. Slapeta for assisting with GFP/MitoTracker red double-labeling yeast mitochondria, and members of the dissertation committee for many helpful comments. At Rockefeller University, we thank Dr. L.B. Sanchez for assistance with the phylogenetic analyses and Dr. M. Muller for critically reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet S. Keithly.

Additional information

Communicated by M. Brunner

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riordan, C.E., Ault, J.G., Langreth, S.G. et al. Cryptosporidium parvum Cpn60 targets a relict organelle. Curr Genet 44, 138–147 (2003). https://doi.org/10.1007/s00294-003-0432-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00294-003-0432-1

Keywords

Navigation