Skip to main content

Advertisement

Log in

Impact of Food-Related Environmental Factors on the Adherence and Biofilm Formation of Natural Staphylococcus aureus Isolates

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Staphylococcus aureus is a pathogenic bacterium capable of developing biofilms on food-processing surfaces, a pathway leading to cross contamination of foods. The purpose of this study was to investigate the influence of environmental stress factors found during seafood production on the adhesion and biofilm-forming properties of S. aureus. Adhesion and biofilm assays were performed on 26 S. aureus isolated from seafood and two S. aureus reference strains (ATCC 6538 and ATCC 43300). Cell surface properties were evaluated by affinity measurements to solvents in a partitioning test, while adhesion and biofilm assays were performed in polystyrene microplates under different stress conditions of temperature, osmolarity, and nutrient content. The expression of genes implicated in the regulation of biofilm formation (icaA, rbf and σB) was analyzed by reverse transcription and quantitative real time PCR. In general, S. aureus isolates showed moderate hydrophobic properties and a marked Lewis-base character. Initial adhesion to polystyrene was positively correlated with the ionic strength of the growth medium. Most of the strains had a higher biofilm production at 37 °C than at 25 °C, promoted by the addition of glucose, whereas NaCl and MgCl2 had a lower impact markedly affected by incubation temperatures. Principal Component Analysis revealed a considerable variability in adhesion and biofilm-forming properties between S. aureus isolates. Transcriptional analysis also indicated variations in gene expression between three characteristic isolates under different environmental conditions. These results suggested that the prevalence of S. aureus strains on food-processing surfaces is above all conditioned by the ability to adapt to the environmental stress conditions present during food production. These findings are relevant for food safety and may be of importance when choosing the safest environmental conditions and material during processing, packaging, and storage of seafood products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akpolat NO, Elçi S, Atmaca S, Akbayin H, Gül K (2003) The effects of magnesium, calcium and EDTA on slime production by Staphylococcus epidermidis strains. Folia Microbiol (Praha) 48(5):649–653

    Article  CAS  Google Scholar 

  2. Ammendolia MG, Di-Rosa R, Montanaro L, Arciola CR, Baldassarri L (1999) Slime production and expression of the slime-associated antigen by staphylococcal clinical isolates. J Clin Microbiol 37(10):3235–3238

    PubMed  CAS  Google Scholar 

  3. Barnes LM, Lo MF, Adams MR, Chamberlain AH (1999) Effect of milk proteins on adhesion of bacteria to stainless steel surfaces. Appl Environ Microbiol 65:4543–4548

    PubMed  CAS  Google Scholar 

  4. Bellon-Fontaine MN, Rault J, van Oss CJ (1996) Microbial adhesion to solvents: a novel method to determine the electron-donor/electron-acceptor or Lewis acid–base properties of microbial cells. Colloid Surf B 7:47–53

    Article  CAS  Google Scholar 

  5. Bore E, Langsrud S, Langsrud Ø, Rode TM, Holck A (2007) Acid-shock responses in Staphylococcus aureus investigated by global gene expression analysis. Microbiology 153:2289–2303

    Article  PubMed  CAS  Google Scholar 

  6. Bos R, van der Mei HC, Busscher HJ (1999) Physico-chemistry of initial microbial adhesive interactions—its mechanisms and methods for study. FEMS Microbiol Rev 23:179–230

    PubMed  CAS  Google Scholar 

  7. Cerca N, Brooks JL, Jefferson KK (2008) Regulation of the intercellular adhesin locus regulator (icaR) by SarA, σB, and icaR in Staphylococcus aureus. J Bacteriol 190:6530–6533

    Article  PubMed  CAS  Google Scholar 

  8. Costerton JW, Geesey GG, Cheng KJ (1978) How bacteria stick. Sci Am 238(1):86–95

    Article  PubMed  CAS  Google Scholar 

  9. Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ (1987) Bacterial biofilms in nature and disease. Annu Rev Microbiol 41:435–464

    Article  PubMed  CAS  Google Scholar 

  10. Cramton SE, Gerke C, Schnell NF, Nichols WW, Gotz F (1999) The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect Immun 67:5427–5433

    PubMed  CAS  Google Scholar 

  11. Cucarella C, Solano C, Valle J, Amorena B, Lasa I, Penades JR (2001) Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183:2888–2896

    Article  PubMed  CAS  Google Scholar 

  12. Cucarella C, Tormo MA, Knecht E, Amorena B, Lasa I, Foster TJ, Penades JR (2002) Expression of the biofilm-associated protein interferes with host protein receptors of Staphylococcus aureus and alters the infective process. Infect Immun 70:3180–3186

    Article  PubMed  Google Scholar 

  13. Cue D, Lei MG, Luong TT, Kuechenmeister L, Dunman PM, O’Donnell S, Rowe S, O’Gara JP, Lee CY (2009) Rbf promotes biofilm formation by Staphylococcus aureus via repression of icaR, a negative regulator of icaADBC. J Bacteriol 191(20):6363–6373

    Article  PubMed  CAS  Google Scholar 

  14. DeVita MD, Wadhera RK, Theis ML, Ingham SC (2007) Assessing the potential of Streptococcus pyogenes and Staphylococcus aureus transfer to foods and customers via a survey of hands, hand-contact surfaces and food-contact surfaces at foodservice facilities. J Food Serv 18:76–79

    Google Scholar 

  15. Dunne WM Jr, Burd EM (1992) The effects of magnesium, calcium, EDTA, and pH on the in vitro adhesion of Staphylococcus epidermidis to plastic. Microbiol Immunol 36:1019–1027

    PubMed  CAS  Google Scholar 

  16. European Food Safety Authority (EFSA), European Centre for Disease Prevention and Control (2011) The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne Outbreaks in 2009. EFSA J 9(3):2090

    Google Scholar 

  17. Eurostat (2007) Fishery statistics: Data 1990–2006. In: Eurostat pocketbooks, 2007. Luxembourg. ISBN 978-92-79-07045-7

  18. Fitzpatrick F, Humphreys H, O’Gara JP (2005) The genetics of staphylococcal biofilm formation-will a greater understanding of pathogenesis lead to better management of device-related infection? Clin Microbiol Infect 11:967–973

    Article  PubMed  CAS  Google Scholar 

  19. Gertz S, Engelmann S, Schmid R, Ziebandt AK, Tischer K, Scharf C, Hacker J, Hecker M (2000) Characterization of the σB regulon in Staphylococcus aureus. J Bacteriol 182(24):6983–6991

    Article  PubMed  CAS  Google Scholar 

  20. Giaouris E, Chapot-Chartier M-P, Briandet R (2009) Surface physicochemical analysis of natural Lactococcus lactis strains reveals the existence of hydrophobic and low charged strains with altered adhesive properties. Int J Food Microbiol 131:2–9

    Article  PubMed  CAS  Google Scholar 

  21. Habimana O, Le-Goff C, Juillard V, Bellon-Fontaine MN, Buist G, Kulakauskas S, Briandet R (2007) Positive role of cell wall anchored proteinase PrtP in adhesion of lactococci. BMC Microbiol 7:36

    Article  PubMed  Google Scholar 

  22. Herrera FC, Santos JA, Otero A, García-López ML (2006) Occurrence of foodborne pathogenic bacteria in retail prepackaged portions of marine fish in Spain. J Appl Microbiol 100:527–536

    Article  PubMed  CAS  Google Scholar 

  23. Jefferson KK, Cramton SE, Gotz F, Pier GB (2003) Identification of a 5-nucleotide sequence that controls expression of the ica locus in Staphylococcus aureus and characterization of the DNA-binding properties of icaR. Mol Microbiol 48:889–899

    Article  PubMed  CAS  Google Scholar 

  24. Kogan G, Sadovskaya I, Chaignon P, Chokr A, Jabbouri S (2006) Biofilms of clinical strains of Staphylococcus that do not contain polysaccharide intercellular adhesin. FEMS Microbiol Lett 255(1):11–16

    Article  PubMed  CAS  Google Scholar 

  25. Kumar CG, Anand SK (1998) Significance of microbial biofilms in food industry: a review. Int J Food Microbiol 42:9–27

    Article  PubMed  CAS  Google Scholar 

  26. Le-Loir Y, Baron F, Gautier M (2003) Staphylococcus aureus and food poisoning. Genet Mol Res 2(1):63–76

    PubMed  Google Scholar 

  27. Lim Y, Jana M, Luong TT, Lee CY (2004) Control of glucose- and NaCl-induced biofilm formation by rbf in Staphylococcus aureus. J Bacteriol 186:722–729

    Article  PubMed  CAS  Google Scholar 

  28. Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339:520–532

    Article  PubMed  CAS  Google Scholar 

  29. Mafu AA, Plumety C, Deschênes L, Goulet J (2011) Adhesion of pathogenic bacteria to food contact surfaces: influence of pH of culture. Int J Microbiol. doi:10.1155/2011/972494

    PubMed  Google Scholar 

  30. Maira-Litran T, Kropec A, Abeygunawardana C, Joyce J, Mark G, Goldmann DA, Pier GB (2002) Immunochemical properties of the staphylococcal poly-N-acetylglucosamine surface polysaccharide. Infect Immun 70:4433–4440

    Article  PubMed  CAS  Google Scholar 

  31. Møretrø T, Hermansen L, Holck AL, Sidhu MS, Rudi K, Langsrud S (2003) Biofilm formation and the presence of the intercellular adhesion locus ica among staphylococci from food and food-processing environments. Appl Environ Microbiol 69(9):5648–5655

    Article  PubMed  Google Scholar 

  32. Novotny L, Dvorska L, Lorencova A, Beran V, Pavlik I (2004) Fish: a potential source of bacterial pathogens for human beings. Vet Med Czech 49(9):343–358

    Google Scholar 

  33. O’Gara JP (2007) ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett 270:179–188

    Article  PubMed  Google Scholar 

  34. Otto M (2008) Staphylococcal biofilms. Curr Top Microbiol Immun 322:207–228

    Article  CAS  Google Scholar 

  35. Pagedar A, Singh J, Batish VK (2010) Surface hydrophobicity, nutritional contents affect Staphylococcus aureus biofilms and temperature influences its survival in preformed biofilms. J Basic Microbiol 50:S98–S106

    Article  PubMed  Google Scholar 

  36. Papadopoulou C, Economou E, Zakas G, Salamoura C, Dontorou C, Apostolou J (2007) Microbiological and pathogenic contaminants of seafood in Greece. J Food Qual 30:28–42

    Article  Google Scholar 

  37. Peeters E, Nelis HJ, Coenye T (2008) Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods 72:157–165

    Article  PubMed  CAS  Google Scholar 

  38. Planchon S, Gaillard-Martinie B, Dordet-Frisoni E, Bellon-Fontaine MN, Leroy S, Labadie J, Hébraud M, Talon R (2006) Formation of biofilm by Staphylococcus xylosus. Int J Food Microbiol 109:88–96

    Article  PubMed  CAS  Google Scholar 

  39. Poulsen LV (1999) Microbial biofilm in food-processing. LWT Food Sci Technol 32:321–326

    Article  CAS  Google Scholar 

  40. Rachid S, Ohlsen K, Wallner U, Hacker J, Hecker M, Ziebuhr W (2000) Alternative transcription factor σB is involved in regulation of biofilm expression in a Staphylococcus aureus mucosal isolate. J Bacteriol 182:6824–6826

    Article  PubMed  CAS  Google Scholar 

  41. Rode TM, Langsrud S, Holck A, Møretrø T (2007) Different patterns of biofilm formation in Staphylococcus aureus under food-related stress conditions. Int J Food Microbiol 116:372–383

    Article  PubMed  CAS  Google Scholar 

  42. Rosenberg M (1981) Bacterial adherence to polystyrene: a replica method of screening for bacterial hydrophobicity. Appl Environ Microbiol 42(2):375–377

    PubMed  CAS  Google Scholar 

  43. Sattar SA, Springthorpe S, Mani S, Gallant M, Nair RC, Scott E, Kain J (2001) Transfer of bacteria from fabrics to hands and other fabrics: development and application of a quantitative method using Staphylococcus aureus as a model. J Appl Microbiol 90:962–970

    Article  PubMed  CAS  Google Scholar 

  44. Simon SS, Sanjeev S (2007) Prevalence of enterotoxigenic Staphylococcus aureus in fishery products and fish-processing factory workers. Food Control 18:1565–1568

    Article  CAS  Google Scholar 

  45. Song B, Leff LG (2006) Influence of magnesium ions on biofilm formation by Pseudomonas fluorescens. Microbiol Res 161:355–361

    Article  PubMed  CAS  Google Scholar 

  46. Spanish Nutrition Foundation (FEN), Regulation and organization fund for the fish and marine cultures market (FROM) (2012) Calculador nutricional y de coste económico interactivo. Available online: http://www.fen.org.es/from/calculadornutricional/

  47. Valle J, Toledo-Arana A, Berasain C, Ghigo JM, Amorena B, Penades JR, Lasa I (2003) SarA and not σ B is essential for biofilm development by Staphylococcus aureus. Mol Microbiol 48:1075–1087

    Article  PubMed  CAS  Google Scholar 

  48. Vautor E, Abadie G, Pont A, Thiery R (2008) Evaluation of the presence of the bap gene in Staphylococcus aureus isolates recovered from human and animals species. Vet Microbiol 127:407–411

    Article  PubMed  CAS  Google Scholar 

  49. Vázquez-Sánchez D, Cabo ML, Saá-Ibusquiza P, Rodríguez-Herrera JJ (2012) Incidence and characterization of Staphylococcus aureus in fishery products marketed in Galicia (Northwest Spain). Int J Food Microbiol 157:286–296

    Article  PubMed  Google Scholar 

  50. Weinrick B, Dunman PM, McAleese F, Murphy E, Projan SJ, Fang Y, Novick RP (2004) Effect of mild acid on gene expression in Staphylococcus aureus. J Bacteriol 186(24):8407–8423

    Article  PubMed  CAS  Google Scholar 

  51. Xu H, Zou Y, Lee HY, Ahn J (2010) Effect of NaCl on the biofilm formation by foodborne pathogens. J Food Sci 75(9):M580–M585

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Author VSD was awarded a research grant (JAE Program) by the Spanish National Research Council (CSIC). We also thank Tone Mari Rode for her excellent scientific advice, Signe Marie Drømtorp for her technical assistance, and Verónica Asensio Fandiño for her collaboration during statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Vázquez-Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vázquez-Sánchez, D., Habimana, O. & Holck, A. Impact of Food-Related Environmental Factors on the Adherence and Biofilm Formation of Natural Staphylococcus aureus Isolates. Curr Microbiol 66, 110–121 (2013). https://doi.org/10.1007/s00284-012-0247-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-012-0247-8

Keywords

Navigation