Skip to main content

Advertisement

Log in

A population pharmacokinetic/pharmacodynamic model of thrombocytopenia characterizing the effect of trastuzumab emtansine (T-DM1) on platelet counts in patients with HER2-positive metastatic breast cancer

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Trastuzumab emtansine (T-DM1) is an antibody-drug conjugate in the development for the treatment of human epidermal growth factor receptor 2-positive cancers. Thrombocytopenia (TCP) is the dose-limiting toxicity of T-DM1. A semimechanistic population pharmacokinetic/pharmacodynamic (PK/PD) model was developed to characterize the effect of T-DM1 on patient platelet counts.

Methods

A PK/PD model with transit compartments that mimic platelet development and circulation was fit to concentration-platelet–time course data from two T-DM1 single-agent studies (TDM3569g; N = 52 and TDM4258g; N = 112). NONMEM® 7 software was used for model development. Data from a separate phase II study (TDM4374g; N = 110) were used for model evaluation. Patient baseline characteristics were evaluated as covariates of model PD parameters.

Results

The model described the platelet data well and predicted the incidence of grade ≥3 TCP. The model predicted that with T-DM1 3.6 mg/kg given every 3 weeks (q3w), the lowest platelet nadir would occur after the first dose. Also predicted was a patient subgroup (46 %) having variable degrees of downward drifting platelet–time profiles, which were predicted to stabilize by the eighth treatment cycle to platelet counts above grade 3 TCP. Baseline characteristics were not significant covariates of PD parameters in the model.

Conclusions

This semimechanistic PK/PD model accurately captures the cycle 1 platelet nadir, the downward drift noted in some patient platelet–time profiles, and the ~8 % incidence of grade ≥3 TCP with T-DM1 3.6 mg/kg q3w. This model supports T-DM1 3.6 mg/kg q3w as a well-tolerated dose with minimal dose delays or reductions for TCP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lewis Phillips GD, Li G, Dugger DL et al (2008) Targeting HER2-positive breast cancer with trastuzumab emtansine, an antibody-cytotoxic drug conjugate. Cancer Res 68:9280–9290. doi:10.1158/0008-5472.CAN-08-1776

    Article  PubMed  CAS  Google Scholar 

  2. Krop IE, Beeram M, Modi S et al (2010) Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J Clin Oncol 28:2698–2704. doi:10.1200/JCO.2009.26.2071

    Article  PubMed  CAS  Google Scholar 

  3. Burris HA III, Rugo H, Vukelja SJ et al (2011) Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J Clin Oncol 29:398–405. doi:10.1200/JCO.2010.29.5865

    Article  PubMed  CAS  Google Scholar 

  4. Krop I, LoRusso P, Miller KD et al (2010) A phase II study of trastuzumab-DM1 (T-DM1), a novel HER2 antibody-drug conjugate, in patients with HER2+ metastatic breast cancer who were previously treated with an anthracycline, a taxane, capecitabine, lapatinib, and trastuzumab. Presented at European Society for Medical Oncology Congress, October 8–12, Milan, Italy (abstract 277O)

  5. Gupta M, LoRusso PM, Wang B et al (2011) Clinical implications of pathophysiological and demographic covariates on the population pharmacokinetics of trastuzumab emtansine, a HER2-targeted antibody-drug conjugate, in patients with HER2-positive metastatic breast cancer. J Clin Pharmacol. doi:10.1177/0091270011403742

    Google Scholar 

  6. Friberg LE, Henningsson A, Maas H, Nguyen L, Karlsson MO (2002) Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol 20:4713–4721. doi:10.1200/JCO.2002.02.140

    Article  PubMed  Google Scholar 

  7. Friberg LE, Karlsson MO (2003) Mechanistic models for myelosuppression. Invest New Drugs 21:183–194

    Article  PubMed  CAS  Google Scholar 

  8. van Kesteren C, Zandvliet AS, Karlsson MO et al (2005) Semi-physiological model describing the hematological toxicity of the anti-cancer agent indisulam. Invest New Drugs 23:225–234

    Article  PubMed  CAS  Google Scholar 

  9. Latz JE, Rusthoven JJ, Karlsson MO, Ghosh A, Johnson RD (2006) Clinical application of a semimechanistic-physiologic population PK/PD model for neutropenia following pemetrexed therapy. Cancer Chemother Pharmacol 57:427–435. doi:10.1007/s00280-005-0035-2

    Article  PubMed  Google Scholar 

  10. Joerger M, Huitema AD, Richel DJ et al (2007) Population pharmacokinetics and pharmacodynamics of paclitaxel and carboplatin in ovarian cancer patients: a study by the European organization for research and treatment of cancer-pharmacology and molecular mechanisms group and new drug development group. Clin Cancer Res 13:6410–6418. doi:10.1158/1078-0432.CCR-07-0064

    Article  PubMed  CAS  Google Scholar 

  11. Schmitt A, Gladieff L, Laffont C et al (2010) Factors for hematopoietic toxicity of carboplatin: refining the targeting of carboplatin systemic exposure. J Clin Oncol 28:4568–4574. doi:10.1200/JCO.2010.29.3597

    Article  PubMed  CAS  Google Scholar 

  12. Gupta P, Friberg LE, Karlsson MO, Krishnaswami S, French J (2010) A semi-mechanistic model of CP-690,550-induced reduction in neutrophil counts in patients with rheumatoid arthritis. J Clin Pharmacol 50:679–687. doi:10.1177/0091270009346060

    Article  PubMed  CAS  Google Scholar 

  13. Beal SL, Boeckman AJ, Sheiner LB (1992) NONMEM users guide, part IV. Regents of California, San Francisco. ftp://nonmem.iconplc.com/Public/nonmem720/guides/iv.pdf. Accessed 16 Dec 2011

  14. Khandelwal A, Harling K, Jonsson EN, Hooker A, Karlsson M (2011) A fast method for testing covariates in population PK/PD models. AAPSJ 13:464–472. doi:10.1208/s12248-011-9289-2

    Article  PubMed  Google Scholar 

  15. Hurvitz SA, Dirix L, Kocsis J et al (2011) Trastuzumab emtansine (T-DM1) versus trastuzumab + docetaxel in previously untreated HER2-positive metastatic breast cancer (MBC): primary results of a randomized, multicenter, open-label phase II study (TDM4450g/BO21976). Presented at European Multidisciplinary Cancer Congress, September 23–27, Stockholm, Sweden (abstract 5001)

  16. Perry MC, McKinney MF (2008) Chemotherapeutic agents: trastuzumab (herceptin). In: Perry MC (ed) The chemotherapy source book, 4th edn. Lippincott Williams & Wilkins, Philadelphia, p 629

    Google Scholar 

  17. Blum RH, Kahlert T (1978) Maytansine: a phase I study of an ansa macrolide with antitumor activity. Cancer Treat Rep 62:435–438

    PubMed  CAS  Google Scholar 

  18. Blum RH, Wittenberg BK, Canellos GP et al (1978) A therapeutic trial of maytansine. Cancer Clin Trials 1:113–117

    PubMed  CAS  Google Scholar 

  19. Rodon J, Garrison M, Hammond LA et al (2008) Cantuzumab mertansine in a three-times a week schedule: a phase I and pharmacokinetic study. Cancer Chemother Pharmacol 62:911–919. doi:10.1007/s00280-007-0672-8

    Article  PubMed  CAS  Google Scholar 

  20. Tolcher AW, Ochoa L, Hammond LA et al (2003) Cantuzumab mertansine, a maytansinoid immunoconjugate directed to the CanAg antigen: a phase I, pharmacokinetic, and biologic correlative study. J Clin Oncol 21:211–222. doi:10.1200/JCO.2003.05.137

    Article  PubMed  CAS  Google Scholar 

  21. Galsky MD, Eisenberger M, Moore-Cooper S et al (2008) Phase I trial of the prostate-specific membrane antigen-directed immunoconjugate MLN2704 in patients with progressive metastatic castration-resistant prostate cancer. J Clin Oncol 26:2147–2154. doi:10.1200/JCO.2007.15.0532

    Article  PubMed  CAS  Google Scholar 

  22. O’Shaughnessy JA, Venzon DJ, Gossard M et al (1995) A phase I study of sequential versus concurrent interleukin-3 and granulocyte-macrophage colony-stimulating factor in advanced breast cancer patients treated with FLAC (5-fluorouracil, leucovorin, doxorubicin, cyclophosphamide) chemotherapy. Blood 86:2913–2921

    PubMed  Google Scholar 

  23. Maze R, Moritz T, Williams DA (1994) Increased survival and multilineage hematopoietic protection from delayed and severe myelosuppressive effects of a nitrosourea with recombinant interleukin-11. Cancer Res 54:4947–4951

    PubMed  CAS  Google Scholar 

  24. National Cancer Institute (2006) Common terminology criteria for adverse events v3.0 (CTCAE). http://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/ctcaev3.pdf. Accessed 20 June 2011

Download references

Acknowledgments

The study was funded by Genentech, Inc. Support for third-party writing assistance was provided by Genentech, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandhya Girish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bender, B.C., Schaedeli-Stark, F., Koch, R. et al. A population pharmacokinetic/pharmacodynamic model of thrombocytopenia characterizing the effect of trastuzumab emtansine (T-DM1) on platelet counts in patients with HER2-positive metastatic breast cancer. Cancer Chemother Pharmacol 70, 591–601 (2012). https://doi.org/10.1007/s00280-012-1934-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-012-1934-7

Keywords

Navigation